Suppr超能文献

结核分枝杆菌中必需的腺苷酰转移酶GlnE的功能分析

Functional analysis of GlnE, an essential adenylyl transferase in Mycobacterium tuberculosis.

作者信息

Carroll Paul, Pashley Carey A, Parish Tanya

机构信息

Centre for Infectious Disease, Institute of Cell and Molecular Science, Barts and the London, Queen Mary's School of Medicine and Dentistry, Blizard Building, 4 Newark Street, Whitechapel, London, United Kingdom.

出版信息

J Bacteriol. 2008 Jul;190(14):4894-902. doi: 10.1128/JB.00166-08. Epub 2008 May 9.

Abstract

Glutamine synthetase (GS) plays an important role in nitrogen assimilation. The major GS of Mycobacterium tuberculosis is GlnA1, a type I GS whose activity is controlled by posttranscriptional modification by GlnE. GlnE is an adenylyl transferase comprised of an adenylylating domain and a deadenylylating domain which modulate GS activity. We previously demonstrated that GlnE is essential in M. tuberculosis in normal growth medium. In this study, we further show that GlnE is required under multiple medium conditions, including in nitrogen-limited medium. We demonstrate that adenylylation is the critical activity for M. tuberculosis survival, since we were able to delete the deadenylylation domain with no apparent effect on growth or GS activity. Furthermore, we identified a critical aspartate residue in the proposed nucleotidyltransferase motif. Temperature-sensitive mutants of GlnE were generated and shown to have a defect in growth and GS activity in nitrogen-limited medium. Finally, we were able to generate a GlnE null mutant in the presence of L-methionine sulfoximine, a GS inhibitor, and glutamine supplementation. In the presence of these supplements, the null mutant was able to grow similarly to the wild type. Surprisingly, the GlnE mutant was able to survive and grow for extended periods in liquid medium, but not on solid medium, in the absence of GS inhibition. Thus, we have confirmed that the unusual requirement of M. tuberculosis for GlnE adenylylation activity is linked to the activity of GS in the cell.

摘要

谷氨酰胺合成酶(GS)在氮同化过程中发挥着重要作用。结核分枝杆菌的主要GS是GlnA1,一种I型GS,其活性受GlnE的转录后修饰调控。GlnE是一种腺苷酰转移酶,由一个腺苷酸化结构域和一个去腺苷酸化结构域组成,这两个结构域调节GS的活性。我们之前证明了GlnE在正常生长培养基中的结核分枝杆菌中是必需的。在本研究中,我们进一步表明,在多种培养基条件下,包括在氮限制培养基中,GlnE都是必需的。我们证明腺苷酸化是结核分枝杆菌生存的关键活性,因为我们能够删除去腺苷酸化结构域,而对生长或GS活性没有明显影响。此外,我们在假定的核苷酸转移酶基序中鉴定出一个关键的天冬氨酸残基。构建了GlnE的温度敏感突变体,并证明其在氮限制培养基中生长和GS活性存在缺陷。最后,我们能够在存在GS抑制剂L-甲硫氨酸亚砜亚胺和补充谷氨酰胺的情况下产生GlnE缺失突变体。在这些补充剂存在的情况下,缺失突变体能够与野生型类似地生长。令人惊讶的是,在没有GS抑制的情况下,GlnE突变体能够在液体培养基中长时间存活和生长,但在固体培养基上则不能。因此,我们证实了结核分枝杆菌对GlnE腺苷酸化活性的异常需求与细胞中GS的活性有关。

相似文献

1
Functional analysis of GlnE, an essential adenylyl transferase in Mycobacterium tuberculosis.
J Bacteriol. 2008 Jul;190(14):4894-902. doi: 10.1128/JB.00166-08. Epub 2008 May 9.
3
Reduced activity of glutamine synthetase in Rhodospirillum rubrum mutants lacking the adenylyltransferase GlnE.
Res Microbiol. 2009 Oct;160(8):581-4. doi: 10.1016/j.resmic.2009.09.003. Epub 2009 Sep 15.
5
Identification of the Mycobacterium tuberculosis GlnE promoter and its response to nitrogen availability.
Microbiology (Reading). 2006 Sep;152(Pt 9):2727-2734. doi: 10.1099/mic.0.28942-0.
6
Diazotrophic Growth Allows Azotobacter vinelandii To Overcome the Deleterious Effects of a Deletion.
Appl Environ Microbiol. 2017 Jun 16;83(13). doi: 10.1128/AEM.00808-17. Print 2017 Jul 1.
7
The role of GlnD in ammonia assimilation in Mycobacterium tuberculosis.
Tuberculosis (Edinb). 2007 Jul;87(4):384-90. doi: 10.1016/j.tube.2006.12.003. Epub 2007 Feb 15.
8
Covalent modification of bacterial glutamine synthetase: physiological significance.
Mol Gen Genet. 1984;197(2):309-17. doi: 10.1007/BF00330979.
9
Mutations that alter the covalent modification of glutamine synthetase in Salmonella typhimurium.
J Bacteriol. 1978 Jun;134(3):1046-55. doi: 10.1128/jb.134.3.1046-1055.1978.
10
Nitrogen metabolism in Streptomyces coelicolor A3(2): modification of glutamine synthetase I by an adenylyltransferase.
Microbiology (Reading). 1999 Sep;145 ( Pt 9):2313-2322. doi: 10.1099/00221287-145-9-2313.

引用本文的文献

2
Nitrogen metabolism in mycobacteria: the key genes and targeted antimicrobials.
Front Microbiol. 2023 May 18;14:1149041. doi: 10.3389/fmicb.2023.1149041. eCollection 2023.
3
5
Control of nitrogen fixation and ammonia excretion in Azorhizobium caulinodans.
PLoS Genet. 2022 Jun 21;18(6):e1010276. doi: 10.1371/journal.pgen.1010276. eCollection 2022 Jun.
6
Novel polyadenylylation-dependent neutralization mechanism of the HEPN/MNT toxin/antitoxin system.
Nucleic Acids Res. 2020 Nov 4;48(19):11054-11067. doi: 10.1093/nar/gkaa855.
9
Flexible nitrogen utilisation by the metabolic generalist pathogen .
Elife. 2019 Jan 31;8:e41129. doi: 10.7554/eLife.41129.
10
Enzymes Involved in AMPylation and deAMPylation.
Chem Rev. 2018 Feb 14;118(3):1199-1215. doi: 10.1021/acs.chemrev.7b00145. Epub 2017 Aug 18.

本文引用的文献

2
The role of GlnD in ammonia assimilation in Mycobacterium tuberculosis.
Tuberculosis (Edinb). 2007 Jul;87(4):384-90. doi: 10.1016/j.tube.2006.12.003. Epub 2007 Feb 15.
4
Identification of the Mycobacterium tuberculosis GlnE promoter and its response to nitrogen availability.
Microbiology (Reading). 2006 Sep;152(Pt 9):2727-2734. doi: 10.1099/mic.0.28942-0.
7
Efficient switching of mycobacteriophage L5-based integrating plasmids in Mycobacterium tuberculosis.
FEMS Microbiol Lett. 2003 Dec 12;229(2):211-5. doi: 10.1016/S0378-1097(03)00823-1.
8
Comprehensive proteomic profiling of the membrane constituents of a Mycobacterium tuberculosis strain.
Mol Cell Proteomics. 2003 Dec;2(12):1284-96. doi: 10.1074/mcp.M300060-MCP200. Epub 2003 Oct 6.
9
The methionine sulfoximine syndrome in the cat.
Epilepsia. 1962 Mar;3:117-30. doi: 10.1111/j.1528-1157.1962.tb05237.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验