Johanson Conrad E, Duncan John A, Klinge Petra M, Brinker Thomas, Stopa Edward G, Silverberg Gerald D
Department of Clinical Neurosciences, Warren Alpert Medical School at Brown University, Providence, RI 02903, USA.
Cerebrospinal Fluid Res. 2008 May 14;5:10. doi: 10.1186/1743-8454-5-10.
This review integrates eight aspects of cerebrospinal fluid (CSF) circulatory dynamics: formation rate, pressure, flow, volume, turnover rate, composition, recycling and reabsorption. Novel ways to modulate CSF formation emanate from recent analyses of choroid plexus transcription factors (E2F5), ion transporters (NaHCO3 cotransport), transport enzymes (isoforms of carbonic anhydrase), aquaporin 1 regulation, and plasticity of receptors for fluid-regulating neuropeptides. A greater appreciation of CSF pressure (CSFP) is being generated by fresh insights on peptidergic regulatory servomechanisms, the role of dysfunctional ependyma and circumventricular organs in causing congenital hydrocephalus, and the clinical use of algorithms to delineate CSFP waveforms for diagnostic and prognostic utility. Increasing attention focuses on CSF flow: how it impacts cerebral metabolism and hemodynamics, neural stem cell progression in the subventricular zone, and catabolite/peptide clearance from the CNS. The pathophysiological significance of changes in CSF volume is assessed from the respective viewpoints of hemodynamics (choroid plexus blood flow and pulsatility), hydrodynamics (choroidal hypo- and hypersecretion) and neuroendocrine factors (i.e., coordinated regulation by atrial natriuretic peptide, arginine vasopressin and basic fibroblast growth factor). In aging, normal pressure hydrocephalus and Alzheimer's disease, the expanding CSF space reduces the CSF turnover rate, thus compromising the CSF sink action to clear harmful metabolites (e.g., amyloid) from the CNS. Dwindling CSF dynamics greatly harms the interstitial environment of neurons. Accordingly the altered CSF composition in neurodegenerative diseases and senescence, because of adverse effects on neural processes and cognition, needs more effective clinical management. CSF recycling between subarachnoid space, brain and ventricles promotes interstitial fluid (ISF) convection with both trophic and excretory benefits. Finally, CSF reabsorption via multiple pathways (olfactory and spinal arachnoidal bulk flow) is likely complemented by fluid clearance across capillary walls (aquaporin 4) and arachnoid villi when CSFP and fluid retention are markedly elevated. A model is presented that links CSF and ISF homeostasis to coordinated fluxes of water and solutes at both the blood-CSF and blood-brain transport interfaces.
1 Overview2 CSF formation2.1 Transcription factors2.2 Ion transporters2.3 Enzymes that modulate transport2.4 Aquaporins or water channels2.5 Receptors for neuropeptides3 CSF pressure3.1 Servomechanism regulatory hypothesis3.2 Ontogeny of CSF pressure generation3.3 Congenital hydrocephalus and periventricular regions3.4 Brain response to elevated CSF pressure3.5 Advances in measuring CSF waveforms4 CSF flow4.1 CSF flow and brain metabolism4.2 Flow effects on fetal germinal matrix4.3 Decreasing CSF flow in aging CNS4.4 Refinement of non-invasive flow measurements5 CSF volume5.1 Hemodynamic factors5.2 Hydrodynamic factors5.3 Neuroendocrine factors6 CSF turnover rate6.1 Adverse effect of ventriculomegaly6.2 Attenuated CSF sink action7 CSF composition7.1 Kidney-like action of CP-CSF system7.2 Altered CSF biochemistry in aging and disease7.3 Importance of clearance transport7.4 Therapeutic manipulation of composition8 CSF recycling in relation to ISF dynamics8.1 CSF exchange with brain interstitium8.2 Components of ISF movement in brain8.3 Compromised ISF/CSF dynamics and amyloid retention9 CSF reabsorption9.1 Arachnoidal outflow resistance9.2 Arachnoid villi vs. olfactory drainage routes9.3 Fluid reabsorption along spinal nerves9.4 Reabsorption across capillary aquaporin channels10 Developing translationally effective models for restoring CSF balance11 Conclusion.
本综述整合了脑脊液(CSF)循环动力学的八个方面:生成速率、压力、流动、容量、周转率、成分、再循环和重吸收。调节脑脊液生成的新方法源于对脉络丛转录因子(E2F5)、离子转运体(NaHCO3共转运)、转运酶(碳酸酐酶同工型)、水通道蛋白1调节以及液体调节神经肽受体可塑性的最新分析。对肽能调节伺服机制、功能失调的室管膜和脑室周围器官在先天性脑积水病因中的作用以及用于诊断和预后效用的脑脊液压力波形描绘算法的临床应用的新见解,使人们对脑脊液压力(CSFP)有了更深入的认识。越来越多的关注集中在脑脊液流动上:它如何影响脑代谢和血流动力学、脑室下区神经干细胞的进展以及中枢神经系统中分解代谢物/肽的清除。从血流动力学(脉络丛血流和搏动性)、流体动力学(脉络丛分泌不足和分泌过多)和神经内分泌因素(即心房利钠肽、精氨酸加压素和碱性成纤维细胞生长因子的协同调节)的各自观点评估脑脊液容量变化的病理生理意义。在衰老、正常压力脑积水和阿尔茨海默病中,不断扩大的脑脊液空间会降低脑脊液周转率,从而损害脑脊液清除中枢神经系统中有害代谢物(如淀粉样蛋白)的汇作用。脑脊液动力学的减弱极大地损害了神经元的间质环境。因此,神经退行性疾病和衰老中脑脊液成分的改变,由于对神经过程和认知的不利影响,需要更有效的临床管理。蛛网膜下腔、脑和脑室之间的脑脊液再循环促进了具有营养和排泄益处的间质液(ISF)对流。最后,当脑脊液压力和液体潴留明显升高时,通过多种途径(嗅觉和脊髓蛛网膜大量流动)的脑脊液重吸收可能由跨毛细血管壁(水通道蛋白4)和蛛网膜绒毛的液体清除来补充。提出了一个模型,该模型将脑脊液和间质液稳态与血脑脊液和血脑转运界面处水和溶质的协调通量联系起来。
1概述2脑脊液生成2.1转录因子2.2离子转运体2.3调节转运的酶2.4水通道蛋白或水通道2.5神经肽受体3脑脊液压力3.1伺服机制调节假说3.2脑脊液压力产生的个体发生3.3先天性脑积水和脑室周围区域3.4脑对脑脊液压力升高的反应3.5脑脊液波形测量的进展4脑脊液流动4.1脑脊液流动与脑代谢4.2流动对胎儿生发基质的影响4.3衰老中枢神经系统中脑脊液流动的减少4.4无创流动测量的改进5脑脊液容量5.1血流动力学因素5.