Suppr超能文献

抗菌剂的统一定量构效关系方法。第3部分:用于抗原生动物化合物的输入编码预测、结构反向投影和复杂网络聚类的首个多任务定量构效关系模型。

Unified QSAR approach to antimicrobials. Part 3: first multi-tasking QSAR model for input-coded prediction, structural back-projection, and complex networks clustering of antiprotozoal compounds.

作者信息

Prado-Prado Francisco J, González-Díaz Humberto, de la Vega Octavio Martinez, Ubeira Florencio M, Chou Kuo-Chen

机构信息

Department of Bioinformatics, CINVESTAV, LANGEBIO, Irapuato 629 36500, Mexico.

出版信息

Bioorg Med Chem. 2008 Jun 1;16(11):5871-80. doi: 10.1016/j.bmc.2008.04.068. Epub 2008 Apr 29.

Abstract

Several pathogen parasite species show different susceptibilities to different antiparasite drugs. Unfortunately, almost all structure-based methods are one-task or one-target Quantitative Structure-Activity Relationships (ot-QSAR) that predict the biological activity of drugs against only one parasite species. Consequently, multi-tasking learning to predict drugs activity against different species by a single model (mt-QSAR) is vitally important. In the two previous works of the present series we reported two single mt-QSAR models in order to predict the antimicrobial activity against different fungal (Bioorg. Med. Chem.2006, 14, 5973-5980) or bacterial species (Bioorg. Med. Chem.2007, 15, 897-902). These mt-QSARs offer a good opportunity (unpractical with ot-QSAR) to construct drug-drug similarity Complex Networks and to map the contribution of sub-structures to function for multiple species. These possibilities were unattended in our previous works. In the present work, we continue this series toward other important direction of chemotherapy (antiparasite drugs) with the development of an mt-QSAR for more than 500 drugs tested in the literature against different parasites. The data were processed by Linear Discriminant Analysis (LDA) classifying drugs as active or non-active against the different tested parasite species. The model correctly classifies 212 out of 244 (87.0%) cases in training series and 207 out of 243 compounds (85.4%) in external validation series. In order to illustrate the performance of the QSAR for the selection of active drugs we carried out an additional virtual screening of antiparasite compounds not used in training or predicting series; the model recognized 97 out of 114 (85.1%) of them. We also give the procedures to construct back-projection maps and to calculate sub-structures contribution to the biological activity. Finally, we used the outputs of the QSAR to construct, by the first time, a multi-species Complex Networks of antiparasite drugs. The network predicted has 380 nodes (compounds), 634 edges (pairs of compounds with similar activity). This network allows us to cluster different compounds and identify on average three known compounds similar to a new query compound according to their profile of biological activity. This is the first attempt to calculate probabilities of antiparasitic action of drugs against different parasites.

摘要

几种病原体寄生虫物种对不同的抗寄生虫药物表现出不同的敏感性。不幸的是,几乎所有基于结构的方法都是单任务或单靶点定量构效关系(ot-QSAR),只能预测药物对单一寄生虫物种的生物活性。因此,通过单一模型预测药物对不同物种活性的多任务学习(mt-QSAR)至关重要。在本系列之前的两篇论文中,我们报道了两个单mt-QSAR模型,用于预测对不同真菌(《生物有机与药物化学》2006年,14卷,5973 - 5980页)或细菌物种(《生物有机与药物化学》2007年,15卷,897 - 902页)的抗菌活性。这些mt-QSAR为构建药物 - 药物相似性复杂网络以及描绘子结构对多种物种功能的贡献提供了一个很好的机会(ot-QSAR无法实现)。在我们之前的工作中没有关注到这些可能性。在本工作中,我们朝着化疗的另一个重要方向(抗寄生虫药物)继续这个系列,开发了一个针对文献中测试的500多种针对不同寄生虫的药物的mt-QSAR。数据通过线性判别分析(LDA)进行处理,将药物分类为对不同测试寄生虫物种有活性或无活性。该模型在训练集中正确分类了244个案例中的212个(87.0%),在外部验证集中正确分类了243种化合物中的207个(85.4%)。为了说明QSAR在选择活性药物方面的性能,我们对未用于训练或预测系列的抗寄生虫化合物进行了额外的虚拟筛选;该模型识别出了114个中的97个(85.1%)。我们还给出了构建反投影图和计算子结构对生物活性贡献的程序。最后,我们首次利用QSAR的输出构建了抗寄生虫药物的多物种复杂网络。预测的网络有380个节点(化合物),634条边(具有相似活性的化合物对)。这个网络使我们能够对不同化合物进行聚类,并根据其生物活性概况平均识别出与新查询化合物相似的三种已知化合物。这是首次尝试计算药物对不同寄生虫抗寄生虫作用的概率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验