Au Samuel, Berniker Max, Herr Hugh
MIT Media Laboratory, 20 Ames Street, Cambridge, MA 02139, USA.
Neural Netw. 2008 May;21(4):654-66. doi: 10.1016/j.neunet.2008.03.006. Epub 2008 Apr 26.
The human ankle varies impedance and delivers net positive work during the stance period of walking. In contrast, commercially available ankle-foot prostheses are passive during stance, causing many clinical problems for transtibial amputees, including non-symmetric gait patterns, higher gait metabolism, and poorer shock absorption. In this investigation, we develop and evaluate a myoelectric-driven, finite state controller for a powered ankle-foot prosthesis that modulates both impedance and power output during stance. The system employs both sensory inputs measured local to the external prosthesis, and myoelectric inputs measured from residual limb muscles. Using local prosthetic sensing, we first develop two finite state controllers to produce biomimetic movement patterns for level-ground and stair-descent gaits. We then employ myoelectric signals as control commands to manage the transition between these finite state controllers. To transition from level-ground to stairs, the amputee flexes the gastrocnemius muscle, triggering the prosthetic ankle to plantar flex at terminal swing, and initiating the stair-descent state machine algorithm. To transition back to level-ground walking, the amputee flexes the tibialis anterior muscle, triggering the ankle to remain dorsiflexed at terminal swing, and initiating the level-ground state machine algorithm. As a preliminary evaluation of clinical efficacy, we test the device on a transtibial amputee with both the proposed controller and a conventional passive-elastic control. We find that the amputee can robustly transition between the finite state controllers through direct muscle activation, allowing rapid transitioning from level-ground to stair walking patterns. Additionally, we find that the proposed finite state controllers result in a more biomimetic ankle response, producing net propulsive work during level-ground walking and greater shock absorption during stair descent. The results of this study highlight the potential of prosthetic leg controllers that exploit neural signals to trigger terrain-appropriate, local prosthetic leg behaviors.
人类脚踝在步行支撑期会改变阻抗并输出净正功。相比之下,市售的踝足假肢在支撑期是被动的,给小腿截肢者带来了许多临床问题,包括步态不对称、步态代谢率较高以及减震效果较差。在本研究中,我们开发并评估了一种用于电动踝足假肢的肌电驱动有限状态控制器,该控制器在支撑期可调节阻抗和功率输出。该系统既采用了在外部假肢局部测量的感觉输入,也采用了从残肢肌肉测量的肌电输入。利用局部假肢传感,我们首先开发了两个有限状态控制器,以产生平地和下楼梯步态的仿生运动模式。然后,我们将肌电信号用作控制命令,以管理这些有限状态控制器之间的转换。要从平地过渡到楼梯,截肢者会收缩腓肠肌,触发假肢脚踝在摆动末期跖屈,并启动下楼梯状态机算法。要回到平地行走,截肢者会收缩胫骨前肌,触发脚踝在摆动末期保持背屈,并启动平地状态机算法。作为对临床疗效的初步评估,我们在一名小腿截肢者身上测试了该装置,分别使用了所提出的控制器和传统的被动弹性控制。我们发现,截肢者可以通过直接肌肉激活在有限状态控制器之间稳健地转换,从而实现从平地到楼梯行走模式的快速转换。此外,我们发现所提出的有限状态控制器会产生更仿生的脚踝反应,在平地行走时产生净推进功,在下楼梯时具有更大的减震效果。这项研究的结果突出了利用神经信号触发适合地形的局部假肢腿部行为的假肢腿部控制器的潜力。