Kao Ying-Jer, Melko Roger G
Department of Physics and Center for Theoretical Sciences, National Taiwan University, Taipei, Taiwan.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Mar;77(3 Pt 2):036708. doi: 10.1103/PhysRevE.77.036708. Epub 2008 Mar 25.
We present an algorithmic framework for a variant of the quantum Monte Carlo operator-loop algorithm, where nonlocal cluster updates are constructed in a way that makes each individual loop smaller. The algorithm is designed to increase simulation efficiency in cases where conventional loops become very large, do not close altogether, or otherwise behave poorly. We demonstrate and characterize some aspects of the short loop on a square lattice spin-1/2 XXZ model where, remarkably, a significant increase in simulation efficiency is observed in some parameter regimes. The simplicity of the model provides a prototype for the use of short loops on more complicated quantum systems.
我们提出了一种用于量子蒙特卡罗算符环算法变体的算法框架,其中非局部团簇更新的构建方式使得每个单独的环更小。该算法旨在提高传统环变得非常大、完全不闭合或以其他方式表现不佳的情况下的模拟效率。我们在正方形晶格自旋-1/2 XXZ模型上展示并刻画了短环的一些方面,在该模型中,显著地,在某些参数区域观察到模拟效率有显著提高。该模型的简单性为在更复杂的量子系统上使用短环提供了一个原型。