Dhar Deepak, Chandra Samarth
Department of Theoretical Physics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India.
Phys Rev Lett. 2008 Mar 28;100(12):120602. doi: 10.1103/PhysRevLett.100.120602. Epub 2008 Mar 27.
We construct a class of lattices in three and higher dimensions for which the number of dimer coverings can be determined exactly using elementary arguments. These lattices are a generalization of the two-dimensional kagome lattice, and the method also works for graphs without translational symmetry. The partition function for dimer coverings on these lattices can be determined also for a class of assignments of different activities to different edges.
我们构建了一类三维及更高维的晶格,对于这类晶格,可以使用基本论证精确确定二聚体覆盖的数量。这些晶格是二维 Kagome 晶格的推广,并且该方法也适用于没有平移对称性的图。对于这些晶格上不同边具有不同活性的一类赋值,也可以确定二聚体覆盖的配分函数。