Torheyden Martin, Valeev Edward F
Department of Chemistry, 107 Davidson Hall, Virginia Tech, Blacksburg, VA 24061, USA.
Phys Chem Chem Phys. 2008 Jun 21;10(23):3410-20. doi: 10.1039/b803620a. Epub 2008 May 20.
We present a variational formulation of the recently-proposed CCSD(2)(R12) method [Valeev, Phys. Chem. Chem. Phys., 2008, 10, 106]. The centerpiece of this approach is the CCSD(2)(R12) Lagrangian obtained via Löwdin partitioning of the coupled-cluster singles and doubles (CCSD) Hamiltonian. Extremization of the Lagrangian yields the second-order basis set incompleteness correction for the CCSD energy. We also developed a simpler Hylleraas-type functional that only depends on one set of geminal amplitudes by applying screening approximations. This functional is used to develop a diagonal orbital-invariant version of the method in which the geminal amplitudes are fixed at the values determined by the first-order cusp conditions. Extension of the variational method to include perturbatively the effect of connected triples produces the method that approximates the complete basis-set limit of the standard CCSD plus perturbative triples [CCSD(T)] method. For a set of 20 small closed-shell molecules, the method recovered at least 94.5/97.3% of the CBS CCSD(T) correlation energy with the aug-cc-pVDZ/aug-cc-pVTZ orbital basis set. For 12 isogyric reactions involving these molecules, combining the aug-cc-pVTZ correlation energies with the aug-cc-pVQZ Hartree-Fock energies produces the electronic reaction energies with a mean absolute deviation of 1.4 kJ mol(-1) from the experimental values. The method has the same number of optimized parameters as the corresponding CCSD(T) model, does not require any modification of the coupled-cluster computer program, and only needs a small triple-zeta basis to match the precision of the considerably more expensive standard quintuple-zeta CCSD(T) computation.
我们给出了最近提出的CCSD(2)(R12)方法[瓦列耶夫,《物理化学化学物理》,2008年,10,106]的变分形式。该方法的核心是通过对耦合簇单双激发(CCSD)哈密顿量进行洛丁分区得到的CCSD(2)(R12)拉格朗日量。拉格朗日量的极值化产生了CCSD能量的二阶基组不完备性校正。我们还通过应用筛选近似开发了一种更简单的海勒拉斯型泛函,它仅依赖于一组双电子振幅。该泛函用于开发该方法的对角轨道不变版本,其中双电子振幅固定为由一阶尖点条件确定的值。将变分方法扩展以微扰地包含连接三重激发的效应,得到了一种近似标准CCSD加微扰三重激发[CCSD(T)]方法的完全基组极限的方法。对于一组20个小的闭壳层分子,该方法使用aug-cc-pVDZ/aug-cc-pVTZ轨道基组恢复了至少94.5/97.3%的CBS CCSD(T)相关能。对于涉及这些分子的12个等几何反应,将aug-cc-pVTZ相关能与aug-cc-pVQZ哈特里-福克能相结合,得到的电子反应能与实验值的平均绝对偏差为1.4 kJ mol⁻¹。该方法具有与相应的CCSD(T)模型相同数量的优化参数,不需要对耦合簇计算机程序进行任何修改,并且只需要一个小三重ζ基组就能达到比昂贵得多的标准五重ζ CCSD(T)计算精度相当的精度。