Suppr超能文献

Combining classifiers for HIV-1 drug resistance prediction.

作者信息

Srisawat Anantaporn, Kijsirikul Boonserm

机构信息

Department of Computer Engineering, Chulalongkorn University, Bangkok, 10330. Thailand.

出版信息

Protein Pept Lett. 2008;15(5):435-42. doi: 10.2174/092986608784567537.

Abstract

This paper applies and studies the behavior of three learning algorithms, i.e. the Support Vector machine (SVM), the Radial Basis Function Network (the RBF network), and k-Nearest Neighbor (k-NN) for predicting HIV-1 drug resistance from genotype data. In addition, a new algorithm for classifier combination is proposed. The results of comparing the predictive performance of three learning algorithms show that, SVM yields the highest average accuracy, the RBF network gives the highest sensitivity, and k-NN yields the best in specificity. Finally, the comparison of the predictive performance of the composite classifier with three learning algorithms demonstrates that the proposed composite classifier provides the highest average accuracy.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验