Lang Claus, Schüler Dirk
Ludwig-Maximillians-Universität München, Department Biologie I, Bereich Mikrobiologie, Maria-Ward-Str. 1a, 80638 Munich, Germany.
Appl Environ Microbiol. 2008 Aug;74(15):4944-53. doi: 10.1128/AEM.00231-08. Epub 2008 Jun 6.
The magnetosomes of magnetotactic bacteria are prokaryotic organelles consisting of a magnetite crystal bounded by a phospholipid bilayer that contains a distinct set of proteins with various functions. Because of their unique magnetic and crystalline properties, magnetosome particles are potentially useful as magnetic nanoparticles in a number of applications, which in many cases requires the coupling of functional moieties to the magnetosome membrane. In this work, we studied the use of green fluorescent protein (GFP) as a reporter for the magnetosomal localization and expression of fusion proteins in the microaerophilic Magnetospirillum gryphiswaldense by flow cytometry, fluorescence microscopy, and biochemical analysis. Although optimum conditions for high fluorescence and magnetite synthesis were mutually exclusive, we established oxygen-limited growth conditions, which supported growth, magnetite biomineralization, and GFP fluorophore formation at reasonable rates. Under these optimized conditions, we studied the subcellular localization and expression of the GFP-tagged magnetosome proteins MamC, MamF, and MamG by fluorescence microscopy and immunoblotting. While all fusions specifically localized at the magnetosome membrane, MamC-GFP displayed the strongest expression and fluorescence. MamC-GFP-tagged magnetosomes purified from cells displayed strong fluorescence, which was sensitive to detergents but stable under a wide range of temperature and salt concentrations. In summary, our data demonstrate the use of GFP as a reporter for protein localization under magnetite-forming conditions and the utility of MamC as an anchor for magnetosome-specific display of heterologous gene fusions.
趋磁细菌的磁小体是原核细胞器,由包裹在磷脂双分子层中的磁铁矿晶体组成,该磷脂双分子层含有一组具有各种功能的独特蛋白质。由于其独特的磁性和晶体特性,磁小体颗粒在许多应用中作为磁性纳米颗粒具有潜在用途,在许多情况下这需要将功能部分与磁小体膜偶联。在这项工作中,我们通过流式细胞术、荧光显微镜和生化分析,研究了使用绿色荧光蛋白(GFP)作为微需氧性趋磁螺菌中磁小体定位和融合蛋白表达的报告分子。尽管高荧光和磁铁矿合成的最佳条件相互排斥,但我们建立了限氧生长条件,该条件以合理的速率支持生长、磁铁矿生物矿化和GFP荧光团形成。在这些优化条件下,我们通过荧光显微镜和免疫印迹研究了GFP标记的磁小体蛋白MamC、MamF和MamG的亚细胞定位和表达。虽然所有融合蛋白都特异性定位于磁小体膜,但MamC-GFP表现出最强的表达和荧光。从细胞中纯化的MamC-GFP标记的磁小体显示出强烈的荧光,其对去污剂敏感,但在广泛的温度和盐浓度下稳定。总之,我们的数据证明了GFP在磁铁矿形成条件下作为蛋白质定位报告分子的用途,以及MamC作为磁小体特异性展示异源基因融合物的锚定分子的效用。