Suppr超能文献

不同氧化还原和质子化状态下[FeFe]氢化酶H簇的结构和电子性质。一项密度泛函理论研究。

Structural and electronic properties of the [FeFe] hydrogenase H-cluster in different redox and protonation states. A DFT investigation.

作者信息

Bruschi Maurizio, Greco Claudio, Fantucci Piercarlo, De Gioia Luca

机构信息

Department of Environmental Science, University of Milano-Bicocca, Piazza della Scienza 1 20126-Milan, Italy.

出版信息

Inorg Chem. 2008 Jul 7;47(13):6056-71. doi: 10.1021/ic8006298. Epub 2008 Jun 10.

Abstract

The molecular and electronic structure of the Fe 6S 6 H-cluster of [FeFe] hydrogenase in relevant redox and protonation states have been investigated by DFT. The calculations have been carried out according to the broken symmetry approach and considering different environmental conditions. The large negative charge of the H-cluster leads, in a vacuum, to structures different from those observed experimentally in the protein. A better agreement with experimental data is observed for solvated complexes, suggesting that the protein environment could buffer the large negative charge of the H-cluster. The comparison of Fe 6S 6 and Fe 2S 2 DFT models shows that the presence of the Fe 4S 4 moiety does not affect appreciably the geometry of the [2Fe] H cluster. In particular, the Fe 4S 4 cluster alone cannot be invoked to explain the stabilization of the mu-CO forms observed in the enzyme (relative to all-terminal CO species). As for protonation of the hydrogen cluster, it turned out that mu-H species are always more stable than terminal hydride isomers, leading to the conclusion that specific interactions of the H-cluster with the environment, not considered in our calculations, would be necessary to reverse the stability order of mu-H and terminal hydrides. Otherwise, protonation of the metal center and H 2 evolution in the enzyme are predicted to be kinetically controlled processes. Finally, subtle modifications in the H-cluster environment can change the relative stability of key frontier orbitals, triggering electron transfer between the Fe 4S 4 and the Fe 2S 2 moieties forming the H-cluster.

摘要

采用密度泛函理论(DFT)研究了[FeFe]氢化酶的Fe₆S₆H簇在相关氧化还原和质子化状态下的分子结构和电子结构。计算是根据破缺对称性方法并考虑不同环境条件进行的。在真空中,H簇的大负电荷导致其结构与在蛋白质中实验观察到的结构不同。对于溶剂化配合物,观察到与实验数据有更好的一致性,这表明蛋白质环境可以缓冲H簇的大负电荷。Fe₆S₆和Fe₂S₂ DFT模型的比较表明,Fe₄S₄部分的存在对[2Fe]H簇的几何形状没有明显影响。特别是,仅Fe₄S₄簇不能用来解释在酶中观察到的μ-CO形式(相对于全末端CO物种)的稳定性。至于氢簇的质子化,结果表明μ-H物种总是比末端氢化物异构体更稳定,从而得出结论,H簇与环境的特定相互作用(在我们的计算中未考虑)对于逆转μ-H和末端氢化物的稳定性顺序是必要的。否则,预计酶中金属中心的质子化和H₂的释放是动力学控制的过程。最后,H簇环境中的细微变化可以改变关键前沿轨道的相对稳定性,引发形成H簇的Fe₄S₄和Fe₂S₂部分之间的电子转移。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验