Suppr超能文献

颗粒动力学中的非均质性。

Heterogeneities in granular dynamics.

作者信息

Mehta A, Barker G C, Luck J M

机构信息

S. N. Bose National Centre for Basic Sciences, Block JD Sector III Salt Lake, Calcutta 700 098, India.

出版信息

Proc Natl Acad Sci U S A. 2008 Jun 17;105(24):8244-9. doi: 10.1073/pnas.0711733105. Epub 2008 Jun 9.

Abstract

The absence of Brownian motion in granular media is a source of much complexity, including the prevalence of heterogeneity, whether static or dynamic, within a given system. Such strong heterogeneities can exist as a function of depth in a box of grains; this is the system we study here. First, we present results from three-dimensional, cooperative and stochastic Monte Carlo shaking simulations of spheres on heterogeneous density fluctuations. Next, we juxtapose these with results obtained from a theoretical model of a column of grains under gravity; frustration via competing local fields is included in our model, whereas the effect of gravity is to slow down the dynamics of successively deeper layers. The combined conclusions suggest that the dynamics of a real granular column can be divided into different phases-ballistic, logarithmic, activated, and glassy-as a function of depth. The nature of the ground states and their retrieval (under zero-temperature dynamics) is analyzed; the glassy phase shows clear evidence of its intrinsic ("crystalline") states, which lie below a band of approximately degenerate ground states. In the other three phases, by contrast, the system jams into a state chosen randomly from this upper band of metastable states.

摘要

颗粒介质中布朗运动的缺失是造成诸多复杂性的根源,包括给定系统内异质性(无论是静态还是动态)的普遍存在。这种强烈的异质性可能随一箱颗粒中深度的变化而存在;这就是我们在此研究的系统。首先,我们展示了关于球体在非均匀密度涨落下的三维、协同和随机蒙特卡洛振动模拟结果。接下来,我们将这些结果与从重力作用下一列颗粒的理论模型获得的结果并列比较;我们的模型纳入了通过竞争局部场产生的阻挫,而重力的作用是减缓相继更深层的动力学。综合结论表明,真实颗粒柱的动力学可根据深度分为不同阶段——弹道阶段、对数阶段、激活阶段和玻璃态阶段。分析了基态的性质及其恢复情况(在零温度动力学下);玻璃态阶段显示出其内在(“晶体”)态的明确证据,这些态位于大约简并基态能带之下。相比之下,在其他三个阶段,系统会陷入从这个亚稳态能带上部随机选择的一个状态。

相似文献

1
Heterogeneities in granular dynamics.
Proc Natl Acad Sci U S A. 2008 Jun 17;105(24):8244-9. doi: 10.1073/pnas.0711733105. Epub 2008 Jun 9.
2
Probability distribution of inherent states in models of granular media and glasses.
Eur Phys J E Soft Matter. 2002 Nov;9(3):219-26. doi: 10.1140/epje/i2002-10079-y.
3
Glassy systems under time-dependent driving forces: application to slow granular rheology.
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 May;63(5 Pt 1):051302. doi: 10.1103/PhysRevE.63.051302. Epub 2001 Apr 12.
4
How the ideal jamming point illuminates the world of granular media.
Soft Matter. 2014 Mar 14;10(10):1519-36. doi: 10.1039/c3sm51231b.
5
Structural signature of slow dynamics and dynamic heterogeneity in two-dimensional colloidal liquids: glassy structural order.
J Phys Condens Matter. 2011 May 18;23(19):194121. doi: 10.1088/0953-8984/23/19/194121. Epub 2011 Apr 27.
6
Constitutive relations in dense granular flows.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Feb;81(2 Pt 1):021305. doi: 10.1103/PhysRevE.81.021305. Epub 2010 Feb 26.
7
Glass-Like Slow Dynamics in a Colloidal Solid with Multiple Ground States.
J Phys Chem B. 2015 Aug 27;119(34):10902-10. doi: 10.1021/jp512952u. Epub 2015 Apr 3.
8
Brownian dynamics and dynamic Monte Carlo simulations of isotropic and liquid crystal phases of anisotropic colloidal particles: a comparative study.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jul;86(1 Pt 1):011403. doi: 10.1103/PhysRevE.86.011403. Epub 2012 Jul 9.
9
Velocity fluctuations in dense granular flows.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Oct;78(4 Pt 1):041304. doi: 10.1103/PhysRevE.78.041304. Epub 2008 Oct 10.

引用本文的文献

2
Microscopic structure and dynamics study of granular segregation mechanism by cyclic shear.
Sci Adv. 2021 Feb 17;7(8). doi: 10.1126/sciadv.abe8737. Print 2021 Feb.
3
Resolving a paradox of anomalous scalings in the diffusion of granular materials.
Proc Natl Acad Sci U S A. 2012 Oct 2;109(40):16012-7. doi: 10.1073/pnas.1211110109. Epub 2012 Sep 19.
4
Independent evaluation of conflicting microspherule results from different investigations of the Younger Dryas impact hypothesis.
Proc Natl Acad Sci U S A. 2012 Oct 30;109(44):E2960-9. doi: 10.1073/pnas.1208603109. Epub 2012 Sep 17.

本文引用的文献

1
Thermodynamics and statistical mechanics of dense granular media.
Phys Rev Lett. 2006 Oct 13;97(15):158001. doi: 10.1103/PhysRevLett.97.158001.
2
Jamming percolation and glass transitions in lattice models.
Phys Rev Lett. 2006 Jan 27;96(3):035702. doi: 10.1103/PhysRevLett.96.035702.
3
Contact force measurements and stress-induced anisotropy in granular materials.
Nature. 2005 Jun 23;435(7045):1079-82. doi: 10.1038/nature03805.
4
Dynamics of shear-transformation zones in amorphous plasticity: Formulation in terms of an effective disorder temperature.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Oct;70(4 Pt 1):041502. doi: 10.1103/PhysRevE.70.041502. Epub 2004 Oct 29.
5
Force distributions in three-dimensional compressible granular packs.
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Oct;66(4 Pt 1):040301. doi: 10.1103/PhysRevE.66.040301. Epub 2002 Oct 14.
6
Dense suspensions and supercooled liquids: dynamic similarities.
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 Aug;60(2 Pt B):2408-10. doi: 10.1103/physreve.60.2408.
7
Glassy dynamics in granular compaction: sand on random graphs.
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Mar;65(3 Pt 1):031305. doi: 10.1103/PhysRevE.65.031305. Epub 2002 Feb 22.
8
Geometry of frictionless and frictional sphere packings.
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Mar;65(3 Pt 1):031304. doi: 10.1103/PhysRevE.65.031304. Epub 2002 Feb 21.
9
The jamming route to the glass state in weakly perturbed granular media.
Nature. 2001 Sep 27;413(6854):407-9. doi: 10.1038/35096540.
10
Three-dimensional direct imaging of structural relaxation near the colloidal glass transition.
Science. 2000 Jan 28;287(5453):627-31. doi: 10.1126/science.287.5453.627.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验