Suppr超能文献

超越元素分子式的质谱代谢组学:通过将实验碎裂光谱与计算碎裂光谱相匹配进行化学数据库查询

Mass spectral metabonomics beyond elemental formula: chemical database querying by matching experimental with computational fragmentation spectra.

作者信息

Hill Dennis W, Kertesz Tzipporah M, Fontaine Dan, Friedman Robert, Grant David F

机构信息

Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06260-3092, USA.

出版信息

Anal Chem. 2008 Jul 15;80(14):5574-82. doi: 10.1021/ac800548g. Epub 2008 Jun 12.

Abstract

Despite recent advances in NMR and mass spectrometry, the structural identification of organic compounds in complex biofluids remains a significant analytical challenge. For mass spectroscopy applications, chemical identification is generally limited to determination of elemental formula. Here we test the hypothesis that unknown chemical structures can be determined by matching their experimental collision-induced dissociation (CID) fragmentation spectra with computational fragmentation spectra of compounds retrieved from chemical databases. The monoisotopic molecular weights (MIMW +/- 10 ppm) of 102 "test" compounds were used to download 102 "bins" from the PubChem database. Each bin contained the corresponding test compound and, on average, 272 other candidate compounds, including 158 compounds having the same elemental formula as the test compound. Commercially available software was used to generate fragmentation spectra for all compounds in each of the 102 bins. Experimental CID spectra for each of the 102 test compounds were then compared to the computational spectra in order to rank candidate compounds based on number of fragment MIMW matches. This method returned the test compound as the highest ranking (or tied with the highest ranking) compound for 65 of the 102 bins. The test compound was ranked within the top 20 candidate compounds for 87 bins. In addition, the correct elemental formula was ranked first for 98 of 102 bins. Thus, matching experimental with computational fragmentation spectra is a valid method for rapidly discriminating among compounds having the same elemental formula and provides a novel approach for querying chemical databases for structural information.

摘要

尽管核磁共振(NMR)和质谱技术最近取得了进展,但在复杂生物流体中有机化合物的结构鉴定仍然是一项重大的分析挑战。对于质谱应用,化学鉴定通常仅限于确定元素组成。在此,我们测试了这样一个假设,即未知化学结构可以通过将其实验性碰撞诱导解离(CID)碎裂光谱与从化学数据库中检索到的化合物的计算碎裂光谱进行匹配来确定。使用102种“测试”化合物的单同位素分子量(MIMW±10 ppm)从PubChem数据库下载了102个“数据组”。每个数据组包含相应的测试化合物,平均还有272种其他候选化合物,其中包括158种与测试化合物具有相同元素组成的化合物。使用市售软件为102个数据组中的所有化合物生成碎裂光谱。然后将102种测试化合物各自的实验CID光谱与计算光谱进行比较,以便根据碎片MIMW匹配数对候选化合物进行排名。对于102个数据组中的65个,该方法将测试化合物列为排名最高(或并列最高)的化合物。在87个数据组中,测试化合物位列前20名候选化合物之中。此外,在102个数据组中的98个中,正确的元素组成排名第一。因此,将实验碎裂光谱与计算碎裂光谱进行匹配是一种在具有相同元素组成的化合物之间快速区分的有效方法,并为查询化学数据库获取结构信息提供了一种新方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验