Schwartzman Armin, Dougherty Robert F, Lee Jongho, Ghahremani Dara, Taylor Jonathan E
Department of Biostatistics, Harvard School of Public Health and Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.
Neuroimage. 2009 Jan 1;44(1):71-82. doi: 10.1016/j.neuroimage.2008.04.182. Epub 2008 Apr 24.
Current strategies for thresholding statistical parametric maps in neuroimaging include control of the family-wise error rate, control of the false discovery rate (FDR) and thresholding of the posterior probability of a voxel being active given the data, the latter derived from a mixture model of active and inactive voxels. Correct inference using any of these criteria depends crucially on the specification of the null distribution of the test statistics. In this article we show examples from fMRI and DTI data where the theoretical null distribution does not match well the observed distribution of the test statistics. As a solution, we introduce the use of an empirical null, a null distribution empirically estimated from the data itself, allowing for global corrections of theoretical null assumptions. The theoretical null distributions considered are normal, t, chi(2) and F, all commonly encountered in neuroimaging. The empirical null estimate is accompanied by an estimate of the proportion of non-active voxels in the data. Based on the two-class mixture model, we present the equivalence between the strategies of controlling FDR and thresholding posterior probabilities in the context of neuroimaging and show that the FDR estimates derived from the empirical null can be seen as empirical Bayes estimates.
当前神经影像学中统计参数图的阈值化策略包括控制族系错误率、控制错误发现率(FDR)以及根据数据对体素激活的后验概率进行阈值化,后者源自激活和未激活体素的混合模型。使用这些标准中的任何一个进行正确推断都关键取决于检验统计量的零分布的设定。在本文中,我们展示了来自功能磁共振成像(fMRI)和扩散张量成像(DTI)数据的示例,其中理论零分布与检验统计量的观测分布不太匹配。作为一种解决方案,我们引入了经验零的使用,即从数据本身经验性估计的零分布,从而允许对理论零假设进行全局校正。所考虑的理论零分布为正态分布、t分布、卡方分布和F分布,这些在神经影像学中都很常见。经验零估计伴随着数据中未激活体素比例的估计。基于两类混合模型,我们展示了在神经影像学背景下控制FDR策略与后验概率阈值化之间的等效性,并表明从经验零得出的FDR估计可被视为经验贝叶斯估计。