Stéphanou Angélique, Mylona Eleni, Chaplain Mark, Tracqui Philippe
Laboratoire TIMC IMAG, Equipe DynaCell, UMR CNRS 5525, Institut d'Ingénierie et de l'Information de Santé (In3S), Faculté de Médecine de Grenoble, 38706 La Tronche Cedex, France.
J Theor Biol. 2008 Aug 21;253(4):701-16. doi: 10.1016/j.jtbi.2008.04.035. Epub 2008 May 4.
Cell migration is a highly integrated process where actin turnover, actomyosin contractility, and adhesion dynamics are all closely linked. In this paper, we propose a computational model investigating the coupling of these fundamental processes within the context of spontaneous (i.e. unstimulated) cell migration. In the unstimulated cell, membrane oscillations originating from the interaction between passive hydrostatic pressure and contractility are sufficient to lead to the formation of adhesion spots. Cell contractility then leads to the maturation of these adhesion spots into focal adhesions. Due to active actin polymerization, which reinforces protrusion at the leading edge, the traction force required for cell translocation can be generated. Computational simulations first show that the model hypotheses allow one to reproduce the main features of fibroblast cell migration and established results on the biphasic aspect of the cell speed as a function of adhesion strength. The model also demonstrates that certain temporal parameters, such as the adhesion proteins recycling time and adhesion lifetimes, influence cell motion patterns, particularly cell speed and persistence of the direction of migration. This study provides some elements, which allow a better understanding of spontaneous cell migration and enables a first glance at how an individual cell would potentially react once exposed to a stimulus.
细胞迁移是一个高度整合的过程,其中肌动蛋白周转、肌动球蛋白收缩性和黏附动力学都紧密相连。在本文中,我们提出了一个计算模型,研究在自发(即未受刺激)细胞迁移的背景下这些基本过程的耦合。在未受刺激的细胞中,由被动静水压力和收缩性之间的相互作用产生的膜振荡足以导致黏附斑的形成。然后细胞收缩性导致这些黏附斑成熟为黏着斑。由于活跃的肌动蛋白聚合作用增强了前沿的突出,从而可以产生细胞移位所需的牵引力。计算模拟首先表明,模型假设能够重现成纤维细胞迁移的主要特征,并证实了细胞速度与黏附强度呈双相关系这一既定结果。该模型还表明,某些时间参数,如黏附蛋白循环时间和黏附寿命,会影响细胞运动模式,特别是细胞速度和迁移方向的持续性。这项研究提供了一些要素,有助于更好地理解自发细胞迁移,并初步了解单个细胞在受到刺激时可能的反应。