van Lieshout M N M
Centrum voor iskunde en Informatica, Kruislaan, Amsterdam, The Netherlands.
IEEE Trans Pattern Anal Mach Intell. 2008 Jul;30(7):1308-12. doi: 10.1109/TPAMI.2008.45.
We advocate the use of Markov sequential object processes for tracking a variable number of moving objects through video frames with a view towards depth calculation. A regression model based on a sequential object process quantifies goodness of fit; regularization terms are incorporated to control within and between frame object interactions. We construct a Markov chain Monte Carlo method for finding the optimal tracks and associated depths and illustrate the approach on a synthetic data set as well as a sport sequence.
我们提倡使用马尔可夫顺序对象过程,通过视频帧跟踪可变数量的移动对象,以进行深度计算。基于顺序对象过程的回归模型量化了拟合优度;纳入正则化项以控制帧内和帧间对象的相互作用。我们构建了一种马尔可夫链蒙特卡罗方法来寻找最优轨迹和相关深度,并在合成数据集以及体育序列上展示了该方法。