Yang Wei, Tam Jasmine, Miller Dave A, Zhou Jiping, McConville Jason T, Johnston Keith P, Williams Robert O
College of Pharmacy, The University of Texas at Austin, 1 University Station, Mail Stop A1920, Austin, TX 78712, USA.
Int J Pharm. 2008 Sep 1;361(1-2):177-88. doi: 10.1016/j.ijpharm.2008.05.003. Epub 2008 May 14.
A nebulized dispersion of amorphous, high surface area, nanostructured aggregates of itraconazole (ITZ):mannitol:lecithin (1:0.5:0.2, w/w) yielded improved bioavailability in mice. The ultra-rapid freezing (URF) technique used to produce the nanoparticles was found to molecularly disperse the ITZ with the excipients as a solid solution. Upon addition to water, ITZ formed a colloidal dispersion suitable for nebulization, which demonstrated optimal aerodynamic properties for deep lung delivery and high lung and systemic levels when dosed to mice. The ITZ nanoparticles produced supersaturation levels 27 times the crystalline solubility upon dissolution in simulated lung fluid. A dissolution/permeation model indicated that the absorption of 3 microm ITZ particles is limited by the dissolution rate (BCS Class II behavior), while absorption is permeation-limited for more rapidly dissolving 230 nm particles. The predicted absorption half-life for 230 nm amorphous ITZ particles was only 15 min, as a result of the small particle size and high supersaturation, in general agreement with the in vivo results. Thus, bioavailability may be enhanced, by decreasing the particle size to accelerate dissolution and increasing permeation with (1) an amorphous morphology to raise the drug solubility, and (2) permeability enhancers.
伊曲康唑(ITZ):甘露醇:卵磷脂(1:0.5:0.2,w/w)的无定形、高表面积、纳米结构聚集体的雾化分散体在小鼠体内的生物利用度得到了提高。用于制备纳米颗粒的超快速冷冻(URF)技术能够使ITZ与辅料以固溶体的形式分子分散。加入水后,ITZ形成了适合雾化的胶体分散体,该分散体在给小鼠给药时表现出用于肺部深部递送的最佳空气动力学特性以及较高的肺部和全身水平。ITZ纳米颗粒在模拟肺液中溶解时产生的过饱和水平是结晶溶解度的27倍。溶解/渗透模型表明,3微米的ITZ颗粒的吸收受溶解速率限制(BCS II类行为),而对于溶解更快的230纳米颗粒,吸收受渗透限制。由于粒径小和过饱和度高,预测230纳米无定形ITZ颗粒的吸收半衰期仅为15分钟,这与体内结果基本一致。因此,通过减小粒径以加速溶解,并使用(1)无定形态以提高药物溶解度和(2)渗透促进剂来增加渗透性,可以提高生物利用度。