Alexander R Todd, Hoenderop Joost G, Bindels René J
Department of Physiology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands.
J Am Soc Nephrol. 2008 Aug;19(8):1451-8. doi: 10.1681/ASN.2008010098. Epub 2008 Jun 18.
The past decade has witnessed multiple advances in our understanding of magnesium (Mg(2+)) homeostasis. The discovery that mutations in claudin-16/paracellin-1 or claudin-19 are responsible for familial hypomagnesemia with hypercalciuria and nephrocalcinosis provided insight into the molecular mechanisms governing paracellular transport of Mg(2+). Our understanding of the transcellular movement of Mg(2+) was similarly enhanced by the realization that defects in transient receptor potential melastatin 6 (TRPM6) cause hypomagnesemia with secondary hypocalcemia. This channel regulates the apical entry of Mg(2+) into epithelia. In so doing, TRPM6 alters whole-body Mg(2+) homeostasis by controlling urinary excretion. Consequently, investigation into the regulation of TRPM6 has increased. Acid-base status, 17beta estradiol, and the immunosuppressive agents FK506 and cyclosporine affect plasma Mg(2+) levels by altering TRPM6 expression. A mutation in epithelial growth factor is responsible for isolated autosomal recessive hypomagnesemia, and epithelial growth factor activates TRPM6. A defect in the gamma-subunit of the Na,K-ATPase causes isolated dominant hypomagnesemia by altering TRPM6 activity through a decrease in the driving force for apical Mg(2+) influx. We anticipate that the next decade will provide further detail into the control of the gatekeeper TRPM6 and, therefore, overall whole-body Mg(2+) balance.
在过去十年中,我们对镁(Mg(2+))稳态的理解取得了多项进展。紧密连接蛋白-16/副细胞黏附分子-1或紧密连接蛋白-19的突变导致伴有高钙尿症和肾钙质沉着症的家族性低镁血症,这一发现为控制Mg(2+)细胞旁转运的分子机制提供了见解。同样,由于认识到瞬时受体电位香草酸亚型6(TRPM6)缺陷会导致低镁血症伴继发性低钙血症,我们对Mg(2+)跨细胞转运的理解也得到了加强。该通道调节Mg(2+)进入上皮细胞的顶端。通过这样做,TRPM6通过控制尿液排泄来改变全身Mg(2+)稳态。因此,对TRPM6调节的研究有所增加。酸碱状态、17β-雌二醇以及免疫抑制剂FK506和环孢素通过改变TRPM6表达来影响血浆Mg(2+)水平。上皮生长因子的突变导致孤立的常染色体隐性低镁血症,并且上皮生长因子激活TRPM6。Na,K-ATP酶γ亚基的缺陷通过降低顶端Mg(2+)内流的驱动力来改变TRPM6活性,从而导致孤立的显性低镁血症。我们预计,未来十年将进一步详细了解TRPM——这个“看门人”的调控机制,进而全面了解全身Mg(2+)平衡。