Prakash A, Risser R C, Mallinckrodt C H
Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA.
Int J Clin Pract. 2008 Aug;62(8):1147-58. doi: 10.1111/j.1742-1241.2008.01808.x. Epub 2008 Jun 28.
Various analytical strategies for addressing missing data in clinical trials are utilised in reporting study results. The most commonly used analytical methods include the last observation carried forward (LOCF), observed case (OC) and the mixed model for repeated measures (MMRM). Each method requires certain assumptions regarding the characteristics of the missing data. If the assumptions for any particular method are not valid, results from that method can be biased. Results based on these different analytical methods can, therefore, be inconsistent, thereby making interpretation of clinical study results confusing. In this investigation, we compare results from MMRM, LOCF and OC in order to illustrate the potential biases and problems in interpretation.
Data from an 8-month, double-blind, randomised, placebo-controlled (placebo; n = 137), outpatient depression clinical trial comparing a serotonin-noradrenalin reuptake inhibitor (SNRI; n = 273) with a selective serotonin reuptake inhibitor (SSRI; n = 274) were used. The study visit schedule included efficacy and safety assessments weekly to week 4, bi-weekly to week 8, and then monthly. Visitwise mean changes for the 17-item Hamilton Depression Rating Scale (HAMD(17)) Maier subscale (primary efficacy outcome), blood pressure, and body weight were analysed using LOCF, MMRM and OC.
Last observation carried forward consistently underestimated within-group mean changes in efficacy (benefit) and safety (risk) for both drugs compared with MMRM, whereas OC tended to overestimate within-group changes.
Inferences are based on between-group comparisons. Therefore, whether or not underestimating (overestimating) within-group changes was conservative or anticonservative depended on the relative magnitude of the bias in each treatment and on whether within-group changes represented improvement or worsening. Preference should be given in analytic plans to methods whose assumptions are more likely to be valid rather than relying on a method based on the hope that its results, if biased, will be conservative.
在报告研究结果时会采用各种分析策略来处理临床试验中的缺失数据。最常用的分析方法包括末次观察结转(LOCF)、观察病例(OC)和重复测量混合模型(MMRM)。每种方法都需要对缺失数据的特征做出某些假设。如果任何特定方法的假设不成立,那么该方法得出的结果可能会有偏差。因此,基于这些不同分析方法得出的结果可能不一致,从而使临床研究结果的解读变得混乱。在本研究中,我们比较了MMRM、LOCF和OC的结果,以说明潜在的偏差和解读中的问题。
使用了一项为期8个月的双盲、随机、安慰剂对照(安慰剂组;n = 137)门诊抑郁症临床试验的数据,该试验比较了一种5-羟色胺-去甲肾上腺素再摄取抑制剂(SNRI;n = 273)和一种选择性5-羟色胺再摄取抑制剂(SSRI;n = 274)。研究访视计划包括在第4周前每周、第4周至第8周每两周、之后每月进行疗效和安全性评估。使用LOCF、MMRM和OC分析了17项汉密尔顿抑郁量表(HAMD(17))迈尔子量表(主要疗效指标)、血压和体重的每次访视平均变化。
与MMRM相比,末次观察结转始终低估了两种药物组内疗效(益处)和安全性(风险)的平均变化,而观察病例则倾向于高估组内变化。
推断基于组间比较。因此,低估(高估)组内变化是保守还是反保守取决于每种治疗中偏差的相对大小以及组内变化代表的是改善还是恶化。在分析计划中应优先选择假设更可能成立的方法,而不是基于其结果即使有偏差也会是保守的这一希望而依赖某一种方法。