Lim S H, Ryu G Y, Seo J H, Park J H, Youn S W, Kim Y K, Shin D M
Department of Chemical Engineering, Hongik University, 72-1, Sangsu-Dong, Mapo-Gu, Seoul 121-791, South Korea.
Ultramicroscopy. 2008 Sep;108(10):1251-5. doi: 10.1016/j.ultramic.2008.04.093. Epub 2008 May 16.
Most organic light-emitting diodes (OLEDs) have a multilayer structure composed of organic layers such as a hole injection layer (HIL), a hole transport layer (HTL), an emission layer (EML), an electron transport layer (ETL) and an electron injection layer (EIL) sandwiched between two electrodes. The organic layers are thin solid films with a thickness from a few nano meters to a few tenths nano meter, respectively. Surface morphology of an organic thin solid film in OLEDs depends on the molecular structure of the organic material and has an affect on device performance. To analyze the effect of surface morphology of an organic thin solid film on fluorescence and electroluminescence (EL) properties, thin solid films of 4-(dicyanomethylene)-2-methyl-6-(julolidin-4-yl-vinyl)-4H-pyran (DCM2) and new red fluorophores, (2E,2'E)-3,3'-[4,4''-bis(dimethylamino)-1,1':4',1''-terphenyl-2',5'-diyl]bis[2-(2-thienyl)acrylonitrile] (ABCV-Th) and (2Z,2'Z)-3,3'-[4,4''-bis(dimethylamino)-1,1':4',1''-terphenyl-2',5'-diyl]bis(2-phenylacrylonitrile) (ABCV-P) were investigated by atomic force microscopy (AFM). The samples for EL and AFM measurement were fabricated by the high-vacuum thermal deposition (8 x 10(-7) Torr) of organic materials onto the surface of indium tin oxide (ITO)-coated glass substrate, in which the layer structures of samples for AFM measurement and those for EL measurement were ITO/NPB (40 nm)/red emitters (80 nm) and ITO/NPB (40 nm)/red emitters (80 nm)/BCP (30 nm)/Liq (2 nm)/Al (100 nm), respectively. The analysis based on AFM measurements well supported that the photoluminescence properties and the device performance were very much dependent upon surface morphology of an organic thin layer.
大多数有机发光二极管(OLED)具有多层结构,该结构由有机层组成,例如夹在两个电极之间的空穴注入层(HIL)、空穴传输层(HTL)、发光层(EML)、电子传输层(ETL)和电子注入层(EIL)。这些有机层是厚度分别从几纳米到十分之几纳米的固体薄膜。OLED中有机固体薄膜的表面形态取决于有机材料的分子结构,并对器件性能有影响。为了分析有机固体薄膜的表面形态对荧光和电致发光(EL)特性的影响,通过原子力显微镜(AFM)研究了4-(二氰基亚甲基)-2-甲基-6-(朱利啶-4-基乙烯基)-4H-吡喃(DCM2)以及新型红色荧光团(2E,2'E)-3,3'-[4,4''-双(二甲氨基)-1,1':4',1''-三联苯-2',5'-二基]双[2-(2-噻吩基)丙烯腈](ABCV-Th)和(2Z,2'Z)-3,3'-[4,4''-双(二甲氨基)-1,1':4',1''-三联苯-2',5'-二基]双(2-苯基丙烯腈)(ABCV-P)的固体薄膜。用于EL和AFM测量的样品是通过在涂有氧化铟锡(ITO)的玻璃基板表面上高真空热沉积(8×10⁻⁷托)有机材料制成的,其中用于AFM测量的样品和用于EL测量的样品的层结构分别为ITO/NPB(厚度40纳米)/红色发光体(厚度80纳米)以及ITO/NPB(厚度40纳米)/红色发光体(厚度80纳米)/BCP(厚度30纳米)/Liq(厚度2纳米)/Al(厚度100纳米)。基于AFM测量的分析有力地支持了光致发光特性和器件性能在很大程度上取决于有机薄层的表面形态这一观点。