Suppr超能文献

即时计数是否反映数字估计?

Does subitizing reflect numerical estimation?

作者信息

Revkin Susannah K, Piazza Manuela, Izard Véronique, Cohen Laurent, Dehaene Stanislas

机构信息

INSERM, U562, Cognitive Neuroimaging Unit, Gif/Yvette, France.

出版信息

Psychol Sci. 2008 Jun;19(6):607-14. doi: 10.1111/j.1467-9280.2008.02130.x.

Abstract

Subitizing is the rapid and accurate enumeration of small sets (up to 3-4 items). Although subitizing has been studied extensively since its first description about 100 years ago, its underlying mechanisms remain debated. One hypothesis proposes that subitizing results from numerical estimation mechanisms that, according to Weber's law, operate with high precision for small numbers. Alternatively, subitizing might rely on a distinct process dedicated to small numerosities. In this study, we tested the hypothesis that there is a shared estimation system for small and large quantities in human adults, using a masked forced-choice paradigm in which participants named the numerosity of displays taken from sets matched for discrimination difficulty; one set ranged from 1 through 8 items, and the other ranged from 10 through 80 items. Results showed a clear violation of Weber's law (much higher precision over numerosities 1-4 than over numerosities 10-40), thus refuting the single-estimation-system hypothesis and supporting the notion of a dedicated mechanism for apprehending small numerosities.

摘要

数感是对小集合(最多3 - 4个项目)进行快速且准确的计数。尽管自大约100年前首次被描述以来,数感已得到广泛研究,但其潜在机制仍存在争议。一种假设认为,数感源于数值估计机制,根据韦伯定律,该机制对小数目能高精度运作。另一种观点认为,数感可能依赖于一个专门处理小数量的独特过程。在本研究中,我们使用一种掩蔽强制选择范式来测试关于人类成年人中小数量和大数量存在共享估计系统的假设,在该范式中,参与者说出从匹配辨别难度的集合中选取的显示的数量;一组范围是1到8个项目,另一组范围是10到80个项目。结果显示明显违反了韦伯定律(对1 - 4的数量的精度远高于对10 - 40的数量),从而驳斥了单一估计系统假设,并支持了存在一个专门用于理解小数量的机制的观点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验