Liang Kuo-Ching, Wang Xiaodong
Department of Electrical Engineering, Columbia University, New York, NY 10027, USA.
EURASIP J Bioinform Syst Biol. 2008;2008(1):253894. doi: 10.1155/2008/253894.
The inference of gene regulatory network from expression data is an important area of research that provides insight to the inner workings of a biological system. The relevance-network-based approaches provide a simple and easily-scalable solution to the understanding of interaction between genes. Up until now, most works based on relevance network focus on the discovery of direct regulation using correlation coefficient or mutual information. However, some of the more complicated interactions such as interactive regulation and co-regulation are not easily detected. In this work, we propose a relevance network model for gene regulatory network inference which employs both mutual information and conditional mutual information to determine the interactions between genes. For this purpose, we propose a conditional mutual information estimator based on adaptive partitioning which allows us to condition on both discrete and continuous random variables. We provide experimental results that demonstrate that the proposed regulatory network inference algorithm can provide better performance when the target network contains coregulated and interactively regulated genes.
从表达数据推断基因调控网络是一个重要的研究领域,它能深入了解生物系统的内部运作。基于相关性网络的方法为理解基因间的相互作用提供了一种简单且易于扩展的解决方案。到目前为止,大多数基于相关性网络的工作都集中在使用相关系数或互信息来发现直接调控。然而,一些更复杂的相互作用,如交互式调控和协同调控,并不容易检测到。在这项工作中,我们提出了一种用于基因调控网络推断的相关性网络模型,该模型同时使用互信息和条件互信息来确定基因间的相互作用。为此,我们提出了一种基于自适应划分的条件互信息估计器,它使我们能够以离散和连续随机变量为条件。我们提供的实验结果表明,当目标网络包含协同调控和交互式调控的基因时,所提出的调控网络推断算法能提供更好的性能。