van Soest A J Knoek, Rozendaal Leonard A
Faculty of Human Movement Sciences and Research Institute MOVE, VU University, Van der Boechorststraat 9, Amsterdam, The Netherlands.
Biol Cybern. 2008 Jul;99(1):29-41. doi: 10.1007/s00422-008-0240-2. Epub 2008 Jun 27.
Control of bipedal standing is typically analyzed in the context of a single-segment inverted pendulum model. The stiffness K (SE) of the series elastic element that transmits the force generated by the contractile elements of the ankle plantarflexors to the skeletal system has been reported to be smaller in magnitude than the destabilizing gravitational stiffness K ( g ). In this study, we assess, in case K (SE) + K ( g ) < 0, if bipedal standing can be locally stable under direct feedback of contractile element length, contractile element velocity (both sensed by muscle spindles) and muscle force (sensed by Golgi tendon organs) to alpha-motoneuron activity. A theoretical analysis reveals that even though positive feedback of force may increase the stiffness of the muscle-tendon complex to values well over the destabilizing gravitational stiffness, dynamic instability makes it impossible to obtain locally stable standing under the conditions assumed.
双足站立的控制通常是在单节段倒立摆模型的背景下进行分析的。据报道,将踝跖屈肌收缩元件产生的力传递到骨骼系统的串联弹性元件的刚度K(SE),其大小小于使系统不稳定的重力刚度K(g)。在本研究中,我们评估在K(SE)+ K(g)<0的情况下,双足站立在收缩元件长度、收缩元件速度(均由肌梭感知)和肌肉力(由高尔基腱器官感知)对α运动神经元活动的直接反馈下是否能局部稳定。理论分析表明,尽管力的正反馈可能会使肌腱复合体的刚度增加到远超过使系统不稳定的重力刚度的值,但动态不稳定性使得在所假设的条件下无法获得局部稳定的站立状态。