Suppr超能文献

秀丽隐杆线虫中蛋白质相互作用的双分子荧光互补(BiFC)分析。

Bimolecular fluorescence complementation (BiFC) analysis of protein interactions in Caenorhabditis elegans.

作者信息

Hiatt Susan M, Shyu Y John, Duren Holli M, Hu Chang-Deng

机构信息

Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Cancer Center, Purdue University, 575 Stadium Mall Drive, RHPH224D, West Lafayette, Indiana, IN 47907-2091, USA.

出版信息

Methods. 2008 Jul;45(3):185-91. doi: 10.1016/j.ymeth.2008.06.003. Epub 2008 Jun 27.

Abstract

Protein interactions are essential components of signal transduction in cells. With the progress in genome-wide yeast two hybrid screens and proteomics analyses, many protein interaction networks have been generated. These analyses have identified hundreds and thousands of interactions in cells and organisms, creating a challenge for further validation under physiological conditions. The bimolecular fluorescence complementation (BiFC) assay is such an assay that meets this need. The BiFC assay is based on the principle of protein fragment complementation, in which two non-fluorescent fragments derived from a fluorescent protein are fused to a pair of interacting partners. When the two partners interact, the two non-fluorescent fragments are brought into proximity and an intact fluorescent protein is reconstituted. Hence, the reconstituted fluorescent signals reflect the interaction of two proteins under study. Over the past six years, the BiFC assay has been used for visualization of protein interactions in living cells and organisms, including our application of the BiFC assay to the transparent nematode Caenorhabditis elegans. We have demonstrated that BiFC analysis in C. elegans provides a direct means to identify and validate protein interactions in living worms and allows visualization of temporal and spatial interactions. Here, we provide a guideline for the implementation of BiFC analysis in living worms and discuss the factors that are critical for BiFC analysis.

摘要

蛋白质相互作用是细胞信号转导的重要组成部分。随着全基因组酵母双杂交筛选和蛋白质组学分析的进展,已经生成了许多蛋白质相互作用网络。这些分析已经在细胞和生物体中鉴定出成千上万的相互作用,这给在生理条件下进行进一步验证带来了挑战。双分子荧光互补(BiFC)分析就是一种满足这一需求的分析方法。BiFC分析基于蛋白质片段互补的原理,其中来自荧光蛋白的两个非荧光片段与一对相互作用的伙伴融合。当这两个伙伴相互作用时,两个非荧光片段靠近,完整的荧光蛋白得以重建。因此,重建的荧光信号反映了所研究的两种蛋白质的相互作用。在过去六年中,BiFC分析已被用于可视化活细胞和生物体中的蛋白质相互作用,包括我们将BiFC分析应用于透明线虫秀丽隐杆线虫。我们已经证明,秀丽隐杆线虫中的BiFC分析提供了一种直接的方法来鉴定和验证活虫中的蛋白质相互作用,并允许可视化时间和空间上的相互作用。在这里,我们提供了在活虫中进行BiFC分析的实施指南,并讨论了对BiFC分析至关重要的因素。

相似文献

1
Bimolecular fluorescence complementation (BiFC) analysis of protein interactions in Caenorhabditis elegans.
Methods. 2008 Jul;45(3):185-91. doi: 10.1016/j.ymeth.2008.06.003. Epub 2008 Jun 27.
2
Localizing protein-protein interactions by bimolecular fluorescence complementation in planta.
Methods. 2008 Jul;45(3):196-206. doi: 10.1016/j.ymeth.2008.06.007. Epub 2008 Jun 27.
4
Multicolor BiFC analysis of competition among G protein beta and gamma subunit interactions.
Methods. 2008 Jul;45(3):207-13. doi: 10.1016/j.ymeth.2008.06.008. Epub 2008 Jun 27.
6
Visualization of protein interactions in living cells using bimolecular fluorescence complementation (BiFC) analysis.
Curr Protoc Cell Biol. 2006 Jan;Chapter 21:Unit 21.3. doi: 10.1002/0471143030.cb2103s29.
10
Visualizing protein interactions by bimolecular fluorescence complementation in Xenopus.
Methods. 2008 Jul;45(3):192-5. doi: 10.1016/j.ymeth.2008.06.005. Epub 2008 Jun 27.

引用本文的文献

1
2
Notch activity is modulated by the aGPCR Latrophilin binding the DSL ligand in C. elegans.
Nat Commun. 2025 Jul 12;16(1):6461. doi: 10.1038/s41467-025-61730-0.
4
Bimolecular Fluorescence Complementation Assay to Evaluate HSP90-Client Protein Interactions in Cells.
Methods Mol Biol. 2023;2693:95-103. doi: 10.1007/978-1-0716-3342-7_8.
5
Hox proteins interact to pattern neuronal subtypes in Caenorhabditis elegans males.
Genetics. 2022 Apr 4;220(4). doi: 10.1093/genetics/iyac010.
6
NanoBRET in C. elegans illuminates functional receptor interactions in real time.
BMC Mol Cell Biol. 2022 Jan 31;23(1):8. doi: 10.1186/s12860-022-00405-w.
7
Long noncoding RNA HOTAIR interacts with Y-Box Protein-1 (YBX1) to regulate cell proliferation.
Life Sci Alliance. 2021 Jul 15;4(9). doi: 10.26508/lsa.202101139. Print 2021 Sep.
8
Leveraging a gain-of-function allele of Caenorhabditis elegans paqr-1 to elucidate membrane homeostasis by PAQR proteins.
PLoS Genet. 2020 Aug 4;16(8):e1008975. doi: 10.1371/journal.pgen.1008975. eCollection 2020 Aug.
10
Regulation of WNT Signaling at the Neuromuscular Junction by the Immunoglobulin Superfamily Protein RIG-3 in .
Genetics. 2017 Jul;206(3):1521-1534. doi: 10.1534/genetics.116.195297. Epub 2017 May 17.

本文引用的文献

2
Nuclear accumulation of Smad complexes occurs only after the midblastula transition in Xenopus.
Development. 2007 Dec;134(23):4209-18. doi: 10.1242/dev.010645. Epub 2007 Oct 24.
3
UNC-1 regulates gap junctions important to locomotion in C. elegans.
Curr Biol. 2007 Aug 7;17(15):1334-9. doi: 10.1016/j.cub.2007.06.060. Epub 2007 Jul 19.
6
An improved mRFP1 adds red to bimolecular fluorescence complementation.
Nat Methods. 2006 Aug;3(8):597-600. doi: 10.1038/nmeth901.
7
Visualization of molecular interactions by fluorescence complementation.
Nat Rev Mol Cell Biol. 2006 Jun;7(6):449-56. doi: 10.1038/nrm1929.
8
Genome-wide prediction of C. elegans genetic interactions.
Science. 2006 Mar 10;311(5766):1481-4. doi: 10.1126/science.1123287.
10
Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo.
PLoS Biol. 2006 Feb;4(2):e20. doi: 10.1371/journal.pbio.0040020. Epub 2006 Jan 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验