Suppr超能文献

生长因子对用于组织工程纤维软骨的肋软骨细胞的影响。

Growth factor effects on costal chondrocytes for tissue engineering fibrocartilage.

作者信息

Johns D E, Athanasiou K A

机构信息

Department of Bioengineering, Rice University, Houston, TX 77251, USA.

出版信息

Cell Tissue Res. 2008 Sep;333(3):439-47. doi: 10.1007/s00441-008-0652-2. Epub 2008 Jul 3.

Abstract

Tissue-engineered fibrocartilage could become a feasible option for replacing tissues such as the knee meniscus or temporomandibular joint disc. This study employed five growth factors (insulin-like growth factor-I, transforming growth factor-beta1, epidermal growth factor, platelet-derived growth factor-BB, and basic fibroblast growth factor) in a scaffoldless approach with costal chondrocytes, attempting to improve biochemical and mechanical properties of engineered constructs. Samples were quantitatively assessed for total collagen, glycosaminoglycans, collagen type I, collagen type II, cells, compressive properties, and tensile properties at two time points. Most treated constructs had lower biomechanical and biochemical properties than the controls with no growth factors, suggesting a detrimental effect, but the treatment with insulin-like growth factor-I tended to improve the constructs. Additionally, the 6-week time point was consistently better than that at 3 weeks, with total collagen, glycosaminoglycans, and aggregate modulus doubling during this time. Further optimization of the time in culture and exogenous stimuli will be important in making a more functional replacement tissue.

摘要

组织工程化纤维软骨可能成为替代膝关节半月板或颞下颌关节盘等组织的可行选择。本研究采用无支架方法,将五种生长因子(胰岛素样生长因子-I、转化生长因子-β1、表皮生长因子、血小板衍生生长因子-BB和碱性成纤维细胞生长因子)与肋软骨细胞一起使用,试图改善工程构建体的生化和力学性能。在两个时间点对样品进行了总胶原蛋白、糖胺聚糖、I型胶原蛋白、II型胶原蛋白、细胞、压缩性能和拉伸性能的定量评估。大多数经处理的构建体的生物力学和生化性能低于未添加生长因子的对照,表明存在有害影响,但胰岛素样生长因子-I处理倾向于改善构建体。此外,6周时间点始终优于3周时,在此期间总胶原蛋白、糖胺聚糖和聚集模量增加了一倍。进一步优化培养时间和外源性刺激对于制造功能更完善的替代组织至关重要。

相似文献

1
Growth factor effects on costal chondrocytes for tissue engineering fibrocartilage.
Cell Tissue Res. 2008 Sep;333(3):439-47. doi: 10.1007/s00441-008-0652-2. Epub 2008 Jul 3.
2
Assessment of growth factor treatment on fibrochondrocyte and chondrocyte co-cultures for TMJ fibrocartilage engineering.
Acta Biomater. 2011 Apr;7(4):1710-8. doi: 10.1016/j.actbio.2010.12.015. Epub 2010 Dec 23.
3
The effect of magnesium ion concentration on the fibrocartilage regeneration potential of goat costal chondrocytes.
Ann Biomed Eng. 2012 Mar;40(3):688-96. doi: 10.1007/s10439-011-0433-z. Epub 2011 Oct 19.
4
Passaged goat costal chondrocytes provide a feasible cell source for temporomandibular joint tissue engineering.
Ann Biomed Eng. 2008 Dec;36(12):1992-2001. doi: 10.1007/s10439-008-9572-2. Epub 2008 Oct 2.
5
Clinically relevant cell sources for TMJ disc engineering.
J Dent Res. 2008 Jun;87(6):548-52. doi: 10.1177/154405910808700609.
6
A comparison of primary and passaged chondrocytes for use in engineering the temporomandibular joint.
Arch Oral Biol. 2009 Feb;54(2):138-45. doi: 10.1016/j.archoralbio.2008.09.018. Epub 2008 Nov 14.
7
Engineering self-assembled neomenisci through combination of matrix augmentation and directional remodeling.
Acta Biomater. 2020 Jun;109:73-81. doi: 10.1016/j.actbio.2020.04.019. Epub 2020 Apr 25.
8
Creating a spectrum of fibrocartilages through different cell sources and biochemical stimuli.
Biotechnol Bioeng. 2008 Jun 15;100(3):587-98. doi: 10.1002/bit.21768.
9
A chondroitinase-ABC and TGF-β1 treatment regimen for enhancing the mechanical properties of tissue-engineered fibrocartilage.
Acta Biomater. 2013 Jan;9(1):4626-34. doi: 10.1016/j.actbio.2012.09.037. Epub 2012 Oct 4.
10
Engineering functional anisotropy in fibrocartilage neotissues.
Biomaterials. 2013 Dec;34(38):9980-9. doi: 10.1016/j.biomaterials.2013.09.026. Epub 2013 Sep 24.

引用本文的文献

1
A review of strategies for development of tissue engineered meniscal implants.
Biomater Biosyst. 2021 Aug 26;4:100026. doi: 10.1016/j.bbiosy.2021.100026. eCollection 2021 Dec.
2
Costal cartilage overgrowth does not induce pectus-like deformation in the chest wall of a rat model.
Exp Ther Med. 2022 Feb;23(2):146. doi: 10.3892/etm.2021.11069. Epub 2021 Dec 15.
4
Engineering self-assembled neomenisci through combination of matrix augmentation and directional remodeling.
Acta Biomater. 2020 Jun;109:73-81. doi: 10.1016/j.actbio.2020.04.019. Epub 2020 Apr 25.
5
Tissue Engineering for the Temporomandibular Joint.
Adv Healthc Mater. 2019 Jan;8(2):e1801236. doi: 10.1002/adhm.201801236. Epub 2018 Dec 17.
6
Considerations for translation of tissue engineered fibrocartilage from bench to bedside.
J Biomech Eng. 2018 Dec 5;141(7):0708021-07080216. doi: 10.1115/1.4042201.
7
A review of in-vitro fibrocartilage tissue engineered therapies with a focus on the temporomandibular joint.
Arch Oral Biol. 2017 Nov;83:193-201. doi: 10.1016/j.archoralbio.2017.07.013. Epub 2017 Jul 23.
8
An Overview of Scaffold Design and Fabrication Technology for Engineered Knee Meniscus.
Materials (Basel). 2017 Jan 3;10(1):29. doi: 10.3390/ma10010029.
9
Recent Tissue Engineering Advances for the Treatment of Temporomandibular Joint Disorders.
Curr Osteoporos Rep. 2016 Dec;14(6):269-279. doi: 10.1007/s11914-016-0327-y.
10
Fibrochondrocyte Growth and Functionality on TiO₂ Nanothin Films.
J Funct Biomater. 2016 Jun 14;7(2):15. doi: 10.3390/jfb7020015.

本文引用的文献

1
Passaged goat costal chondrocytes provide a feasible cell source for temporomandibular joint tissue engineering.
Ann Biomed Eng. 2008 Dec;36(12):1992-2001. doi: 10.1007/s10439-008-9572-2. Epub 2008 Oct 2.
2
Clinically relevant cell sources for TMJ disc engineering.
J Dent Res. 2008 Jun;87(6):548-52. doi: 10.1177/154405910808700609.
3
Creating a spectrum of fibrocartilages through different cell sources and biochemical stimuli.
Biotechnol Bioeng. 2008 Jun 15;100(3):587-98. doi: 10.1002/bit.21768.
5
Chondrocytes from different zones exhibit characteristic differences in high density culture.
Connect Tissue Res. 2006;47(3):133-40. doi: 10.1080/03008200600685392.
6
A self-assembling process in articular cartilage tissue engineering.
Tissue Eng. 2006 Apr;12(4):969-79. doi: 10.1089/ten.2006.12.969.
7
Platelet-derived growth factor enhances proliferation and matrix synthesis of temporomandibular joint disc-derived cells.
Angle Orthod. 2006 May;76(3):486-92. doi: 10.1043/0003-3219(2006)076[0486:PGFEPA]2.0.CO;2.
8
Chondrogenic differentiation and functional maturation of bovine mesenchymal stem cells in long-term agarose culture.
Osteoarthritis Cartilage. 2006 Feb;14(2):179-89. doi: 10.1016/j.joca.2005.09.002. Epub 2005 Oct 27.
9
Biochemical analysis of the porcine temporomandibular joint disc.
Br J Oral Maxillofac Surg. 2006 Apr;44(2):124-8. doi: 10.1016/j.bjoms.2005.05.002. Epub 2005 Jul 11.
10
Evaluation of three growth factors for TMJ disc tissue engineering.
Ann Biomed Eng. 2005 Mar;33(3):383-90. doi: 10.1007/s10439-005-1741-y.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验