Turecek Frantisek, Chen Xiaohong, Hao Changtong
Department of Chemistry, Bagley Hall, Box 351700, University of Washington, Seattle, Washington 98195-1700, USA.
J Am Chem Soc. 2008 Jul 9;130(27):8818-33. doi: 10.1021/ja8019005.
We report the first detailed analysis at correlated levels of ab initio theory of experimentally studied peptide cations undergoing charge reduction by collisional electron transfer and competitive dissociations by loss of H atoms, ammonia, and N-C alpha bond cleavage in the gas phase. Doubly protonated Gly-Lys, (GK + 2H) (2+), and Lys-Lys, (KK + 2H) (2+), are each calculated to exist as two major conformers in the gas phase. Electron transfer to conformers with an extended lysine chain triggers highly exothermic dissociation by loss of ammonia from the Gly residue, which occurs from the ground ( X ) electronic state of the cation radical. Loss of Lys ammonium H atoms is predicted to occur from the first excited ( A ) state of the charge-reduced ions. The X and A states are nearly degenerate and show extensive delocalization of unpaired electron density over spatially remote groups. This delocalization indicates that the captured electron cannot be assigned to reduce a particular charged group in the peptide cation and that superposition of remote local Rydberg-like orbitals plays a critical role in affecting the cation-radical reactivity. Electron attachment to ion conformers with carboxyl-solvated Lys ammonium groups results in spontaneous isomerization by proton-coupled electron transfer to the carboxyl group forming dihydroxymethyl radical intermediates. This directs the peptide dissociation toward NC alpha bond cleavage that can proceed by multiple mechanisms involving reversible proton migrations in the reactants or ion-molecule complexes. The experimentally observed formations of Lys z (+*) fragments from (GK + 2H) (2+) and Lys c (+) fragments from (KK + 2H) (2+) correlate with the product thermochemistry but are independent of charge distribution in the transition states for NC alpha bond cleavage. This emphasizes the role of ion-molecule complexes in affecting the charge distribution between backbone fragments produced upon electron transfer or capture.
我们报告了对实验研究的肽阳离子进行从头算理论相关水平的首次详细分析,这些肽阳离子在气相中通过碰撞电子转移进行电荷还原,并通过失去氢原子、氨以及N-Cα键断裂进行竞争性解离。计算得出,双质子化的甘氨酰-赖氨酸((GK + 2H)(2+))和赖氨酸-赖氨酸((KK + 2H)(2+))在气相中均以两种主要构象存在。电子转移至赖氨酸链伸展的构象会引发甘氨酸残基失去氨的高度放热解离,这发生在阳离子自由基的基态(X)电子态。预计赖氨酸铵氢原子的损失发生在电荷减少离子的第一激发态(A)。X态和A态几乎简并,并且未成对电子密度在空间上相距较远的基团上有广泛的离域。这种离域表明捕获的电子不能被指定用于还原肽阳离子中的特定带电基团,并且远程局部类里德堡轨道的叠加在影响阳离子自由基反应性方面起着关键作用。电子附着到具有羧基溶剂化赖氨酸铵基团的离子构象上会通过质子耦合电子转移到羧基形成二羟甲基自由基中间体而导致自发异构化。这使得肽解离倾向于N-Cα键断裂,该断裂可通过多种机制进行,包括反应物或离子 - 分子复合物中的可逆质子迁移。实验观察到的(GK + 2H)(2+)产生的赖氨酸z(+*)片段和(KK + 2H)(2+)产生的赖氨酸c(+)片段的形成与产物热化学相关,但与N-Cα键断裂过渡态中的电荷分布无关。这强调了离子 - 分子复合物在影响电子转移或捕获后产生的主链片段之间电荷分布方面的作用。