Suppr超能文献

A method to obtain surface strains of soft tissues using a laser scanning device.

作者信息

Heuer Frank, Wolfram Uwe, Schmidt Hendrik, Wilke Hans-Joachim

机构信息

Institute of Orthopaedic Research and Biomechanics, University of Ulm, Helmholtzstr. 14, 89081 Ulm, Germany.

出版信息

J Biomech. 2008 Aug 7;41(11):2402-10. doi: 10.1016/j.jbiomech.2008.05.031. Epub 2008 Jul 14.

Abstract

A three-dimensional laser scanning device was developed allowing surface digitization of musculoskeletal and soft tissue structures under different loads. Image-processing algorithms were formulated for image registration. These were used to determine displacement mapping and then surface strains. Various validation experiments were performed. Accuracy was obtained on a test cylinder after rigid rotation and on a silicon cylinder compressed in four loading steps. The system accuracy (including the scanning and the data evaluation) was +/-0.10% strain in vertical and +/-0.16% strain in shear and circumferential direction for the rigid rotation exhibiting the zero-strain situation. Silicon cylinder compression showed that the accuracy was best for small strains, whereas strains >5% evoked a slight underestimation increasing further with higher strains (error of 0.54% for 7.22% vertical strain). It was possible to increase the accuracy by performing the strain measurements via sub-steps. This had a remaining error of 0.41% for 7.22% vertical strain. A further experiment was carried out in order to acquire the surface strain of a human lumbar intervertebral disc while it was forced to flexion and extension. This study introduced a laser-based scanning method to obtain soft tissue surface strains. It is important to know the strain distribution of musculoskeletal structures and soft tissues. This could help to better understand the mechanical loading of biological structures e.g. the processes in fracture healing. These data could also be used to assist in the validation process for finite-element models.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验