Suppr超能文献

开放态KcsA通道选择性过滤器的构象变化:能量最小化研究

Conformational changes in the selectivity filter of the open-state KcsA channel: an energy minimization study.

作者信息

Miloshevsky Gennady V, Jordan Peter C

机构信息

Department of Chemistry, Brandeis University, Waltham, Massachusetts, USA.

出版信息

Biophys J. 2008 Oct;95(7):3239-51. doi: 10.1529/biophysj.108.136556. Epub 2008 Jul 11.

Abstract

Potassium channels switch between closed and open conformations and selectively conduct K(+) ions. There are at least two gates. The TM2 bundle at the intracellular site is the primary gate of KcsA, and rearrangements at the selectivity filter (SF) act as the second gate. The SF blocks ion flow via an inactivation process similar to C-type inactivation of voltage-gated K(+) channels. We recently generated the open-state conformation of the KcsA channel. We found no major, possibly inactivating, structural changes in the SF associated with this massive inner-pore rearrangement, which suggests that the gates might act independently. Here we energy-minimize the open state of wild-type and mutant KcsA, validating in silico structures of energy-minimized SFs by comparison with crystallographic structures, and use these data to gain insight into how mutation, ion depletion, and K(+) to Na(+) substitution influence SF conformation. Both E71 or D80 protonations/mutations and the presence/absence of protein-buried water molecule(s) modify the H-bonding network stabilizing the P-loops, spawning numerous SF conformations. We find that the inactivated state corresponds to conformations with a partially unoccupied or an entirely empty SF. These structures, involving modifications in all four P-loops, are stabilized by H-bonds between amide H and carbonyl O atoms from adjacent P-loops, which block ion passage. The inner portions of the P-loops are more rigid than the outer parts. Changes are localized to the outer binding sites, with innermost site S4 persisting in the inactivated state. Strong binding by Na(+) locally contracts the SF around Na(+), releasing ligands that do not participate in Na(+) coordination, and occluding the permeation pathway. K(+) selectivity primarily appears to arise from the inability of the SF to completely dehydrate Na(+) ions due to basic structural differences between liquid water and the "quasi-liquid" SF matrix.

摘要

钾通道在关闭和开放构象之间转换,并选择性地传导钾离子。至少有两个门控。细胞内侧的TM2束是KcsA的主要门控,而选择性过滤器(SF)的重排则作为第二个门控。SF通过类似于电压门控钾通道C型失活的失活过程来阻断离子流。我们最近获得了KcsA通道的开放态构象。我们发现,与这种大规模的内孔重排相关的SF中没有主要的、可能导致失活的结构变化,这表明门控可能独立起作用。在此,我们对野生型和突变型KcsA的开放态进行能量最小化,通过与晶体结构比较来验证能量最小化SF的计算机模拟结构,并利用这些数据深入了解突变、离子耗尽以及钾离子与钠离子置换如何影响SF构象。E71或D80的质子化/突变以及蛋白质包埋水分子的存在与否都会改变稳定P环的氢键网络,产生众多的SF构象。我们发现失活状态对应于SF部分未占据或完全空的构象。这些结构涉及所有四个P环的修饰,通过相邻P环的酰胺氢和羰基氧原子之间的氢键得以稳定,从而阻断离子通过。P环的内部比外部更刚性。变化局限于外部结合位点,最内侧的位点S4在失活状态下持续存在。钠离子的强结合使SF在钠离子周围局部收缩,释放不参与钠离子配位的配体,并阻塞渗透途径。钾离子选择性主要似乎源于SF由于液态水和“准液态”SF基质之间的基本结构差异而无法使钠离子完全脱水。

相似文献

1
Conformational changes in the selectivity filter of the open-state KcsA channel: an energy minimization study.
Biophys J. 2008 Oct;95(7):3239-51. doi: 10.1529/biophysj.108.136556. Epub 2008 Jul 11.
2
Mechanism for selectivity-inactivation coupling in KcsA potassium channels.
Proc Natl Acad Sci U S A. 2011 Mar 29;108(13):5272-7. doi: 10.1073/pnas.1014186108. Epub 2011 Mar 14.
3
Sodium permeability and sensitivity induced by mutations in the selectivity filter of the KcsA channel towards Kir channels.
Biochimie. 2010 Mar;92(3):232-44. doi: 10.1016/j.biochi.2009.11.007. Epub 2009 Dec 3.
4
Protonation state of E71 in KcsA and its role for channel collapse and inactivation.
Proc Natl Acad Sci U S A. 2012 Sep 18;109(38):15265-70. doi: 10.1073/pnas.1211900109. Epub 2012 Aug 31.
5
Selective exclusion and selective binding both contribute to ion selectivity in KcsA, a model potassium channel.
J Biol Chem. 2017 Sep 15;292(37):15552-15560. doi: 10.1074/jbc.M117.795807. Epub 2017 Aug 4.
6
7
Selectivity filter ion binding affinity determines inactivation in a potassium channel.
Proc Natl Acad Sci U S A. 2020 Nov 24;117(47):29968-29978. doi: 10.1073/pnas.2009624117. Epub 2020 Nov 5.
8
Individual Ion Binding Sites in the K(+) Channel Play Distinct Roles in C-type Inactivation and in Recovery from Inactivation.
Structure. 2016 May 3;24(5):750-761. doi: 10.1016/j.str.2016.02.021. Epub 2016 Apr 14.
9
Probing the Structural Dynamics of the Activation Gate of KcsA Using Homo-FRET Measurements.
Int J Mol Sci. 2021 Nov 4;22(21):11954. doi: 10.3390/ijms222111954.
10
A single NaK channel conformation is not enough for non-selective ion conduction.
Nat Commun. 2018 Feb 19;9(1):717. doi: 10.1038/s41467-018-03179-y.

引用本文的文献

1
Inferring functional units in ion channel pores via relative entropy.
Eur Biophys J. 2021 Jan;50(1):37-57. doi: 10.1007/s00249-020-01480-7. Epub 2021 Feb 1.
3
The influence of membrane bilayer thickness on KcsA channel activity.
Channels (Austin). 2019 Dec;13(1):424-439. doi: 10.1080/19336950.2019.1676367.
7
How to resolve microsecond current fluctuations in single ion channels: the power of beta distributions.
Channels (Austin). 2015;9(5):262-80. doi: 10.1080/19336950.2015.1083660.
8
On the selective ion binding hypothesis for potassium channels.
Proc Natl Acad Sci U S A. 2011 Nov 1;108(44):17963-8. doi: 10.1073/pnas.1110735108. Epub 2011 Oct 19.
9
Perspectives on: ion selectivity: design principles for K+ selectivity in membrane transport.
J Gen Physiol. 2011 Jun;137(6):479-88. doi: 10.1085/jgp.201010579.
10
Thermodynamics of ion selectivity in the KcsA K+ channel.
J Gen Physiol. 2011 May;137(5):427-33. doi: 10.1085/jgp.201010533.

本文引用的文献

1
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.
2
Global twisting motion of single molecular KcsA potassium channel upon gating.
Cell. 2008 Jan 11;132(1):67-78. doi: 10.1016/j.cell.2007.11.040.
3
Quantum mechanical calculations on selectivity in the KcsA channel: the role of the aqueous cavity.
J Phys Chem B. 2008 Jan 31;112(4):1293-8. doi: 10.1021/jp076854o. Epub 2008 Jan 5.
4
K+/Na+ selectivity in K channels and valinomycin: over-coordination versus cavity-size constraints.
J Mol Biol. 2008 Feb 8;376(1):13-22. doi: 10.1016/j.jmb.2007.11.059. Epub 2007 Nov 28.
5
Open-state conformation of the KcsA K+ channel: Monte Carlo normal mode following simulations.
Structure. 2007 Dec;15(12):1654-62. doi: 10.1016/j.str.2007.09.022.
6
A quantitative description of KcsA gating I: macroscopic currents.
J Gen Physiol. 2007 Nov;130(5):465-78. doi: 10.1085/jgp.200709843. Epub 2007 Oct 15.
7
Conformational dynamics of the KcsA potassium channel governs gating properties.
Nat Struct Mol Biol. 2007 Nov;14(11):1089-95. doi: 10.1038/nsmb1311. Epub 2007 Oct 7.
9
The predominant role of coordination number in potassium channel selectivity.
Biophys J. 2007 Oct 15;93(8):2635-43. doi: 10.1529/biophysj.107.108167. Epub 2007 Jun 15.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验