Du Liping, Wu Shuanhu, Liew Alan Wee-Chung, Smith David K
Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong.
Int J Bioinform Res Appl. 2008;4(3):337-49. doi: 10.1504/IJBRA.2008.019579.
We propose a new strategy to analyse the periodicity of gene expression profiles using Singular Spectrum Analysis (SSA) and Autoregressive (AR) model based spectral estimation. By combining the advantages of SSA and AR modelling, more periodic genes are extracted in the Plasmodium falciparum data set, compared with the classical Fourier analysis technique. We are able to identify more gene targets for new drug discovery, and by checking against the seven well-known malaria vaccine candidates, we have found five additional genes that warrant further biological verification.
我们提出了一种新策略,利用奇异谱分析(SSA)和基于自回归(AR)模型的谱估计来分析基因表达谱的周期性。与经典傅里叶分析技术相比,通过结合SSA和AR建模的优势,在恶性疟原虫数据集中提取了更多的周期性基因。我们能够识别出更多用于新药研发的基因靶点,并且通过对照七种著名的疟疾疫苗候选物进行检查,我们发现了另外五个值得进一步生物学验证的基因。