Suppr超能文献

酿酒酵母适应发酵代谢过程中糖酵解调节的动力学

Dynamics of glycolytic regulation during adaptation of Saccharomyces cerevisiae to fermentative metabolism.

作者信息

van den Brink Joost, Canelas André B, van Gulik Walter M, Pronk Jack T, Heijnen Joseph J, de Winde Johannes H, Daran-Lapujade Pascale

机构信息

Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands.

出版信息

Appl Environ Microbiol. 2008 Sep;74(18):5710-23. doi: 10.1128/AEM.01121-08. Epub 2008 Jul 18.

Abstract

The ability of baker's yeast (Saccharomyces cerevisiae) to rapidly increase its glycolytic flux upon a switch from respiratory to fermentative sugar metabolism is an important characteristic for many of its multiple industrial applications. An increased glycolytic flux can be achieved by an increase in the glycolytic enzyme capacities (V(max)) and/or by changes in the concentrations of low-molecular-weight substrates, products, and effectors. The goal of the present study was to understand the time-dependent, multilevel regulation of glycolytic enzymes during a switch from fully respiratory conditions to fully fermentative conditions. The switch from glucose-limited aerobic chemostat growth to full anaerobiosis and glucose excess resulted in rapid acceleration of fermentative metabolism. Although the capacities (V(max)) of the glycolytic enzymes did not change until 45 min after the switch, the intracellular levels of several substrates, products, and effectors involved in the regulation of glycolysis did change substantially during the initial 45 min (e.g., there was a buildup of the phosphofructokinase activator fructose-2,6-bisphosphate). This study revealed two distinct phases in the upregulation of glycolysis upon a switch to fermentative conditions: (i) an initial phase, in which regulation occurs completely through changes in metabolite levels; and (ii) a second phase, in which regulation is achieved through a combination of changes in V(max) and metabolite concentrations. This multilevel regulation study qualitatively explains the increase in flux through the glycolytic enzymes upon a switch of S. cerevisiae to fermentative conditions and provides a better understanding of the roles of different regulatory mechanisms that influence the dynamics of yeast glycolysis.

摘要

面包酵母(酿酒酵母)在从呼吸型糖代谢转变为发酵型糖代谢时能够迅速提高其糖酵解通量,这是其众多工业应用中的一个重要特性。糖酵解通量的增加可以通过提高糖酵解酶的活性(V(max))和/或通过改变低分子量底物、产物和效应物的浓度来实现。本研究的目的是了解在从完全呼吸条件转变为完全发酵条件的过程中,糖酵解酶的时间依赖性多级调控。从葡萄糖限制的好氧恒化器生长转变为完全厌氧和葡萄糖过量,导致发酵代谢迅速加速。尽管糖酵解酶的活性(V(max))在转变后45分钟之前没有变化,但在最初的45分钟内,参与糖酵解调控的几种底物、产物和效应物的细胞内水平确实发生了显著变化(例如,磷酸果糖激酶激活剂果糖-2,6-二磷酸积累)。这项研究揭示了在转变为发酵条件时糖酵解上调的两个不同阶段:(i)初始阶段,调控完全通过代谢物水平的变化发生;(ii)第二阶段,调控通过V(max)的变化和代谢物浓度的组合来实现。这项多级调控研究定性地解释了酿酒酵母转变为发酵条件时通过糖酵解酶的通量增加,并更好地理解了影响酵母糖酵解动态的不同调控机制的作用。

相似文献

1
Dynamics of glycolytic regulation during adaptation of Saccharomyces cerevisiae to fermentative metabolism.
Appl Environ Microbiol. 2008 Sep;74(18):5710-23. doi: 10.1128/AEM.01121-08. Epub 2008 Jul 18.
7
Energetic limits to metabolic flexibility: responses of Saccharomyces cerevisiae to glucose-galactose transitions.
Microbiology (Reading). 2009 Apr;155(Pt 4):1340-1350. doi: 10.1099/mic.0.025775-0.
8
The fluxes through glycolytic enzymes in Saccharomyces cerevisiae are predominantly regulated at posttranscriptional levels.
Proc Natl Acad Sci U S A. 2007 Oct 2;104(40):15753-8. doi: 10.1073/pnas.0707476104. Epub 2007 Sep 26.
10
The importance of ATP as a regulator of glycolytic flux in Saccharomyces cerevisiae.
Yeast. 2000 Jun 30;16(9):797-809. doi: 10.1002/1097-0061(20000630)16:9<797::AID-YEA553>3.0.CO;2-5.

引用本文的文献

3
Evaluation of Pyrophosphate-Driven Proton Pumps in under Stress Conditions.
Microorganisms. 2024 Mar 20;12(3):625. doi: 10.3390/microorganisms12030625.
4
Cellular Adaptation Takes Advantage of Atavistic Regression Programs during Carcinogenesis.
Cancers (Basel). 2023 Aug 3;15(15):3942. doi: 10.3390/cancers15153942.
5
The impact of metabolism on the adaptation of organisms to environmental change.
Front Cell Dev Biol. 2023 Jun 12;11:1197226. doi: 10.3389/fcell.2023.1197226. eCollection 2023.
6
Yeast increases glycolytic flux to support higher growth rates accompanied by decreased metabolite regulation and lower protein phosphorylation.
Proc Natl Acad Sci U S A. 2023 Jun 20;120(25):e2302779120. doi: 10.1073/pnas.2302779120. Epub 2023 Jun 12.
10
Monitoring Intracellular Metabolite Dynamics in during Industrially Relevant Famine Stimuli.
Metabolites. 2022 Mar 18;12(3):263. doi: 10.3390/metabo12030263.

本文引用的文献

1
In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae: II. Mathematical model.
Biotechnol Bioeng. 1997 Aug 20;55(4):592-608. doi: 10.1002/(SICI)1097-0290(19970820)55:4<592::AID-BIT2>3.0.CO;2-C.
2
In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae : I. Experimental observations.
Biotechnol Bioeng. 1997 Jul 20;55(2):305-16. doi: 10.1002/(SICI)1097-0290(19970720)55:2<305::AID-BIT8>3.0.CO;2-M.
5
The fluxes through glycolytic enzymes in Saccharomyces cerevisiae are predominantly regulated at posttranscriptional levels.
Proc Natl Acad Sci U S A. 2007 Oct 2;104(40):15753-8. doi: 10.1073/pnas.0707476104. Epub 2007 Sep 26.
6
The energy spilling reactions of bacteria and other organisms.
J Mol Microbiol Biotechnol. 2007;13(1-3):1-11. doi: 10.1159/000103591.
9
Measurement of fast dynamic intracellular pH in Saccharomyces cerevisiae using benzoic acid pulse.
Biotechnol Bioeng. 2007 May 1;97(1):86-98. doi: 10.1002/bit.21179.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验