Suppr超能文献

暴露测量中的随机误差对暴露反应形状的影响。

The effect of random error in exposure measurement upon the shape of the exposure response.

机构信息

The Environ Health Science Institute, 602 East Georgia Avenue, Ruston, LA 71270, USA.

出版信息

Dose Response. 2006 May 22;3(4):456-64. doi: 10.2203/dose-response.003.04.002.

Abstract

Although statistical analyses of epidemiological data usually treat the exposure variable as being known without error, estimated exposures in epidemiological studies often involve considerable uncertainty. This paper investigates the theoretical effect of random errors in exposure measurement upon the observed shape of the exposure response. The model utilized assumes that true exposures are log-normally distributed, and multiplicative measurement errors are also log-normally distributed and independent of the true exposures. Under these conditions it is shown that whenever the true exposure response is proportional to exposure to a power r, the observed exposure response is proportional to exposure to a power K, where K < r. This implies that the observed exposure response exaggerates risk, and by arbitrarily large amounts, at sufficiently small exposures. It also follows that a truly linear exposure response will appear to be supra-linear-i.e., a linear function of exposure raised to the K-th power, where K is less than 1.0. These conclusions hold generally under the stated log-normal assumptions whenever there is any amount of measurement error, including, in particular, when the measurement error is unbiased either in the natural or log scales. Equations are provided that express the observed exposure response in terms of the parameters of the underlying log-normal distribution. A limited investigation suggests that these conclusions do not depend upon the log-normal assumptions, but hold more widely. Because of this problem, in addition to other problems in exposure measurement, shapes of exposure responses derived empirically from epidemiological data should be treated very cautiously. In particular, one should be cautious in concluding that the true exposure response is supra-linear on the basis of an observed supra-linear form.

摘要

虽然流行病学数据的统计分析通常认为暴露变量是无误差的,但流行病学研究中的估计暴露通常涉及相当大的不确定性。本文研究了暴露测量中的随机误差对观察到的暴露反应形状的理论影响。所使用的模型假设真实暴露呈对数正态分布,并且乘法测量误差也呈对数正态分布且与真实暴露独立。在这些条件下,只要真实暴露反应与暴露呈幂次 r 成正比,那么观察到的暴露反应与暴露呈幂次 K 成正比,其中 K < r。这意味着观察到的暴露反应夸大了风险,而且在暴露非常小的情况下,风险会被夸大到任意大的程度。此外,真实的线性暴露反应将呈现出超线性——即暴露的线性函数提升到 K 次幂,其中 K 小于 1.0。只要存在任何数量的测量误差,包括在自然或对数尺度上无偏的测量误差,这些结论都可以在规定的对数正态假设下普遍适用。还提供了一个方程,用潜在对数正态分布的参数来表示观察到的暴露反应。有限的调查表明,这些结论不依赖于对数正态假设,而是更广泛地适用。由于这个问题,以及暴露测量中的其他问题,应该非常谨慎地对待从流行病学数据中经验获得的暴露反应形状。特别是,基于观察到的超线性形式,人们应该谨慎地得出真实暴露反应是超线性的结论。

相似文献

1
The effect of random error in exposure measurement upon the shape of the exposure response.
Dose Response. 2006 May 22;3(4):456-64. doi: 10.2203/dose-response.003.04.002.
2
Update of potency factors for asbestos-related lung cancer and mesothelioma.
Crit Rev Toxicol. 2008;38 Suppl 1:1-47. doi: 10.1080/10408440802276167.
3
Statistical methods for estimating doubling time in in vitro cell growth.
In Vitro Cell Dev Biol Anim. 1997 Apr;33(4):289-93. doi: 10.1007/s11626-997-0049-7.
5
Aggregation of exposure level and probability into a single metric in job-exposure matrices creates bias.
Ann Occup Hyg. 2012 Nov;56(9):1038-50. doi: 10.1093/annhyg/mes031. Epub 2012 Sep 17.
6
Effect of measurement error on epidemiological studies of environmental and occupational exposures.
Occup Environ Med. 1998 Oct;55(10):651-6. doi: 10.1136/oem.55.10.651.
9
Response to letter to the editor from Dr Rahman Shiri: The challenging topic of suicide across occupational groups.
Scand J Work Environ Health. 2018 Jan 1;44(1):108-110. doi: 10.5271/sjweh.3698. Epub 2017 Dec 8.

引用本文的文献

2
Comparing the performance of air pollution models for nitrogen dioxide and ozone in the context of a multilevel epidemiological analysis.
Environ Epidemiol. 2020 May 13;4(3):e093. doi: 10.1097/EE9.0000000000000093. eCollection 2020 Jun.
3
Linear low-dose extrapolation for noncancer heath effects is the exception, not the rule.
Crit Rev Toxicol. 2011 Jan;41(1):1-19. doi: 10.3109/10408444.2010.536524.
4
Statistical challenges in evaluating dose-response using epidemiological data.
Dose Response. 2006 May 22;3(4):453-5. doi: 10.2203/dose-response.003.04.001.

本文引用的文献

1
Exposure measurement error: influence on exposure-disease. Relationships and methods of correction.
Annu Rev Public Health. 1993;14:69-93. doi: 10.1146/annurev.pu.14.050193.000441.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验