Suppr超能文献

组织中两个人类心房细胞模型的特性:恢复、记忆、传播和折返。

Properties of two human atrial cell models in tissue: restitution, memory, propagation, and reentry.

作者信息

Cherry Elizabeth M, Evans Steven J

机构信息

Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.

出版信息

J Theor Biol. 2008 Oct 7;254(3):674-90. doi: 10.1016/j.jtbi.2008.06.030. Epub 2008 Jul 4.

Abstract

To date, two detailed ionic models of human atrial cell electrophysiology have been developed, the Nygren et al. model (NM) and the Courtemanche et al. model (CM). Although both models draw from similar experimental data, they have vastly different properties. This paper provides the first systematic analysis and comparison of the dynamics of these models in spatially extended systems including one-dimensional cables and rings, two-dimensional sheets, and a realistic three-dimensional human atrial geometry. We observe that, as in single cells, the CM adapts to rate changes primarily by changes in action potential duration (APD) and morphology, while for the NM rate changes affect resting membrane potential (RMP) more than APD. The models also exhibit different memory properties as assessed through S1-S2 APD and conduction velocity (CV) restitution curves with different S1 cycle lengths. Reentrant wave dynamics also differ, with the NM exhibiting stable, non-breaking spirals and the CM exhibiting frequent transient wave breaks. The realistic atrial geometry modifies dynamics in some cases through drift, transient pinning, and breakup. Previously proposed modifications to represent atrial fibrillation-remodeled electrophysiology produce altered dynamics, including reduced rate adaptation and memory for both models and conversion to stable reentry for the CM. Furthermore, proposed variations to the NM to reproduce action potentials more closely resembling those of the CM do not substantially alter the underlying dynamics of the model, so that tissue simulations using these modifications still behave more like the unmodified NM. Finally, interchanging the transmembrane current formulations of the two models suggests that currents contribute more strongly to RMP and CV, intracellular calcium dynamics primarily determine reentrant wave dynamics, and both are important in APD restitution and memory in these models. This finding implies that the formulation of intracellular calcium processes is as important to producing realistic models as transmembrane currents.

摘要

迄今为止,已经开发出两种详细的人类心房细胞电生理离子模型,即Nygren等人的模型(NM)和Courtemanche等人的模型(CM)。尽管这两种模型都基于相似的实验数据,但它们具有截然不同的特性。本文首次对这些模型在空间扩展系统中的动力学进行了系统分析和比较,这些系统包括一维电缆和环、二维片层以及逼真的三维人体心房几何结构。我们观察到,与单细胞情况一样,CM主要通过动作电位持续时间(APD)和形态的变化来适应心率变化,而对于NM,心率变化对静息膜电位(RMP)的影响大于对APD的影响。通过具有不同S1周期长度的S1 - S2 APD和传导速度(CV)恢复曲线评估,这两种模型还表现出不同的记忆特性。折返波动力学也有所不同,NM表现出稳定的、不破裂的螺旋波,而CM表现出频繁的瞬态波破裂。逼真的心房几何结构在某些情况下通过漂移、瞬态钉扎和破裂来改变动力学。先前提出的用于表示心房颤动重塑电生理的修改会产生改变的动力学,包括两种模型的心率适应性和记忆性降低,以及CM转变为稳定折返。此外,对NM进行的旨在更紧密地再现类似于CM的动作电位的提议变化并没有实质性地改变模型的基本动力学,因此使用这些修改进行的组织模拟仍然更像未修改的NM。最后,互换这两种模型的跨膜电流公式表明,电流对RMP和CV的贡献更强,细胞内钙动力学主要决定折返波动力学,并且两者在这些模型的APD恢复和记忆中都很重要。这一发现意味着细胞内钙过程的公式对于生成逼真的模型与跨膜电流一样重要。

相似文献

1
Properties of two human atrial cell models in tissue: restitution, memory, propagation, and reentry.
J Theor Biol. 2008 Oct 7;254(3):674-90. doi: 10.1016/j.jtbi.2008.06.030. Epub 2008 Jul 4.
2
Dynamics of human atrial cell models: restitution, memory, and intracellular calcium dynamics in single cells.
Prog Biophys Mol Biol. 2008 Sep;98(1):24-37. doi: 10.1016/j.pbiomolbio.2008.05.002. Epub 2008 May 29.
3
Electrical refractory period restitution and spiral wave reentry in simulated cardiac tissue.
Am J Physiol Heart Circ Physiol. 2002 Jul;283(1):H448-60. doi: 10.1152/ajpheart.00898.2001.
4
The Na+/K+ pump is an important modulator of refractoriness and rotor dynamics in human atrial tissue.
Am J Physiol Heart Circ Physiol. 2012 Mar 1;302(5):H1146-59. doi: 10.1152/ajpheart.00668.2011. Epub 2011 Dec 23.
5
Head-tail interactions in numerical simulations of reentry in a ring of cardiac tissue.
Heart Rhythm. 2005 Aug;2(8):851-9. doi: 10.1016/j.hrthm.2005.05.012.
6
Role of up-regulation of IK1 in action potential shortening associated with atrial fibrillation in humans.
Cardiovasc Res. 2005 Jun 1;66(3):493-502. doi: 10.1016/j.cardiores.2005.01.020. Epub 2005 Feb 24.
7
Anatomical and spiral wave reentry in a simplified model for atrial electrophysiology.
J Theor Biol. 2017 Apr 21;419:100-107. doi: 10.1016/j.jtbi.2017.02.008. Epub 2017 Feb 10.
8
Suppression of alternans and conduction blocks despite steep APD restitution: electrotonic, memory, and conduction velocity restitution effects.
Am J Physiol Heart Circ Physiol. 2004 Jun;286(6):H2332-41. doi: 10.1152/ajpheart.00747.2003. Epub 2004 Jan 29.
9
Cardiac electrical restitution properties and stability of reentrant spiral waves: a simulation study.
Am J Physiol. 1999 Jan;276(1):H269-83. doi: 10.1152/ajpheart.1999.276.1.H269.
10
A membrane model of electrically remodelled atrial myocardium derived from in vivo measurements.
Europace. 2005 Sep;7 Suppl 2:135-45. doi: 10.1016/j.eupc.2005.04.010.

引用本文的文献

2
The physics of heart rhythm disorders.
Phys Rep. 2022 Sep 19;978:1-45. doi: 10.1016/j.physrep.2022.06.003. Epub 2022 Jul 6.
4
Bayesian Calibration of Electrophysiology Models Using Restitution Curve Emulators.
Front Physiol. 2021 Jul 22;12:693015. doi: 10.3389/fphys.2021.693015. eCollection 2021.
5
Sensitivity and Uncertainty Analysis of Two Human Atrial Cardiac Cell Models Using Gaussian Process Emulators.
Front Physiol. 2020 Apr 23;11:364. doi: 10.3389/fphys.2020.00364. eCollection 2020.
6
Atrial fibrillation source area probability mapping using electrogram patterns of multipole catheters.
Biomed Eng Online. 2020 May 5;19(1):27. doi: 10.1186/s12938-020-00769-0.
7
The impact of wall thickness and curvature on wall stress in patient-specific electromechanical models of the left atrium.
Biomech Model Mechanobiol. 2020 Jun;19(3):1015-1034. doi: 10.1007/s10237-019-01268-5. Epub 2019 Dec 4.
9
Locating Atrial Fibrillation Rotor and Focal Sources Using Iterative Navigation of Multipole Diagnostic Catheters.
Cardiovasc Eng Technol. 2019 Jun;10(2):354-366. doi: 10.1007/s13239-019-00414-5. Epub 2019 Apr 15.
10
Iterative navigation of multipole diagnostic catheters to locate repeating-pattern atrial fibrillation drivers.
J Cardiovasc Electrophysiol. 2019 May;30(5):758-768. doi: 10.1111/jce.13872. Epub 2019 Feb 11.

本文引用的文献

1
Dynamics of human atrial cell models: restitution, memory, and intracellular calcium dynamics in single cells.
Prog Biophys Mol Biol. 2008 Sep;98(1):24-37. doi: 10.1016/j.pbiomolbio.2008.05.002. Epub 2008 May 29.
2
Minimal model for human ventricular action potentials in tissue.
J Theor Biol. 2008 Aug 7;253(3):544-60. doi: 10.1016/j.jtbi.2008.03.029. Epub 2008 Apr 8.
3
Cell model for efficient simulation of wave propagation in human ventricular tissue under normal and pathological conditions.
Phys Med Biol. 2006 Dec 7;51(23):6141-56. doi: 10.1088/0031-9155/51/23/014. Epub 2006 Nov 8.
4
A tale of two dogs: analyzing two models of canine ventricular electrophysiology.
Am J Physiol Heart Circ Physiol. 2007 Jan;292(1):H43-55. doi: 10.1152/ajpheart.00955.2006. Epub 2006 Sep 22.
5
Sex-based transmural differences in cardiac repolarization and ionic-current properties in canine left ventricles.
Am J Physiol Heart Circ Physiol. 2006 Aug;291(2):H570-80. doi: 10.1152/ajpheart.01288.2005. Epub 2006 Feb 24.
6
Atrial cell action potential parameter fitting using genetic algorithms.
Med Biol Eng Comput. 2005 Sep;43(5):561-71. doi: 10.1007/BF02351029.
7
Mechanisms of excitation-contraction coupling in an integrative model of the cardiac ventricular myocyte.
Biophys J. 2006 Jan 1;90(1):77-91. doi: 10.1529/biophysj.105.065169. Epub 2005 Oct 7.
8
Head-tail interactions in numerical simulations of reentry in a ring of cardiac tissue.
Heart Rhythm. 2005 Sep;2(9):1038-46. doi: 10.1016/j.hrthm.2005.08.015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验