Nakamura Takeshi, Aoki Kazuhiro, Matsuda Michiyuki
Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
Brain Cell Biol. 2008 Aug;36(1-4):19-30. doi: 10.1007/s11068-008-9028-5. Epub 2008 Jul 25.
Genetically encoded probes based on Förster resonance energy transfer (FRET) enable us to decipher spatiotemporal information encoded in complex tissues such as the brain. Firstly, this review focuses on FRET probes wherein both the donor and acceptor are fluorescence proteins and are incorporated into a single molecule, i.e. unimolecular probes. Advantages of these probes lie in their easy loading into cells, the simple acquisition of FRET images, and the clear evaluation of data. Next, we introduce our recent study which encompasses FRET imaging and in silico simulation. In nerve growth factor-induced neurite outgrowth in PC12 cells, we found positive and negative signaling feedback loops. We propose that these feedback loops determine neurite-budding sites. We would like to emphasize that it is now time to accelerate crossover research in neuroscience, optics, and computational biology.
基于荧光共振能量转移(FRET)的基因编码探针使我们能够解读编码在诸如大脑等复杂组织中的时空信息。首先,本综述聚焦于供体和受体均为荧光蛋白且被整合到单个分子中的FRET探针,即单分子探针。这些探针的优点在于易于载入细胞、FRET图像获取简单以及数据评估清晰。接下来,我们介绍我们最近包含FRET成像和计算机模拟的研究。在神经生长因子诱导的PC12细胞神经突生长过程中,我们发现了正负信号反馈回路。我们提出这些反馈回路决定了神经突出芽位点。我们想要强调现在是加速神经科学、光学和计算生物学交叉研究的时候了。