Mulvaney S P, Myers K M, Sheehan P E, Whitman L J
Naval Research Laboratory, Washington, DC 20375, USA.
Biosens Bioelectron. 2009 Jan 1;24(5):1109-15. doi: 10.1016/j.bios.2008.06.010. Epub 2008 Jun 17.
We describe a semi-homogenous (SH) implementation of a fluidic force discrimination (FFD) assay using only two reagent mixtures and three assay steps that can be performed in as little as 10min. Previously microbead labels and FFD have been combined to achieve multiplexed, femtomolar nucleic acid hybridization and immunoassays in a microarray format [Mulvaney, S.P., Cole, C.L., Kniller, M.D., Malito, M., Tamanaha, C.R., Rife, J.C., Stanton, M.W., Whitman, L.J., 2007. Biosen. Bioelectron. 23, 191-200.]. In SH FFD assays, the microbeads and any required intermediate receptors (e.g., secondary antibodies) are first mixed directly with a sample, allowing target analytes to be efficiently captured onto the beads. The target-loaded beads are then specifically captured onto a microarray surface, with nonspecifically bound beads removed by controlled, laminar fluidic forces. The remaining beads on each microarray capture spot are counted to determine the targets' identities and concentrations. SH target collection provides a 1000-fold improvement in the assay sensitivity, down to attomolar concentrations, as demonstrated by our detection of staphylococcal enterotoxin B (SEB) at 35 aM (1 fg/ml). We also show that SH assays are adaptable for extraction, preconcentration, and identification of analytes in complex sample matrices, including assays for SEB and ricin toxoid in serum and whole blood. Finally, we present a detailed model of the reaction kinetics that reveals how capturing the targets onto the beads in solution provides a significant kinetic advantage at low target concentrations where mass transport to a microarray surface is most limited.
我们描述了一种流体动力辨别(FFD)分析的半均相(SH)实施方案,该方案仅使用两种试剂混合物和三个分析步骤,整个过程可在短短10分钟内完成。此前,微珠标记和FFD已结合使用,以实现微阵列形式的多重飞摩尔核酸杂交和免疫分析[Mulvaney, S.P., Cole, C.L., Kniller, M.D., Malito, M., Tamanaha, C.R., Rife, J.C., Stanton, M.W., Whitman, L.J., 2007. Biosen. Bioelectron. 23, 191 - 200.]。在SH FFD分析中,首先将微珠和任何所需的中间受体(如二抗)直接与样品混合,使目标分析物有效地捕获到微珠上。然后,将负载有目标物的微珠特异性捕获到微阵列表面,通过受控的层流流体动力去除非特异性结合的微珠。对每个微阵列捕获点上剩余的微珠进行计数,以确定目标物的身份和浓度。SH目标收集使分析灵敏度提高了1000倍,低至阿托摩尔浓度,我们对35 aM(1 fg/ml)的葡萄球菌肠毒素B(SEB)的检测证明了这一点。我们还表明,SH分析适用于复杂样品基质中分析物的提取、预浓缩和鉴定,包括血清和全血中SEB和蓖麻毒素类毒素的分析。最后,我们提出了一个详细的反应动力学模型,该模型揭示了在溶液中将目标物捕获到微珠上如何在低目标浓度下提供显著的动力学优势,此时向微阵列表面的质量传输最为受限。