Ying Leslie, Liu Bo, Steckner Michael C, Wu Gaohong, Wu Min, Li Shi-Jiang
Department of Electrical Engineering and Computer Science, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA.
Magn Reson Med. 2008 Aug;60(2):414-21. doi: 10.1002/mrm.21665.
SENSE reconstruction suffers from an ill-conditioning problem, which increasingly lowers the signal-to-noise ratio (SNR) as the reduction factor increases. Ill-conditioning also degrades the convergence behavior of iterative conjugate gradient reconstructions for arbitrary trajectories. Regularization techniques are often used to alleviate the ill-conditioning problem. Based on maximum a posteriori statistical estimation with a Huber Markov random field prior, this study presents a new method for adaptive regularization using the image and noise statistics. The adaptive Huber regularization addresses the blurry edges in Tikhonov regularization and the blocky effects in total variation (TV) regularization. Phantom and in vivo experiments demonstrate improved image quality and convergence speed over both the unregularized conjugate gradient method and Tikhonov regularization method, at no increase in total computation time.
灵敏度编码(SENSE)重建存在病态问题,随着缩减因子的增加,该问题会使信噪比(SNR)不断降低。对于任意轨迹,病态问题还会降低迭代共轭梯度重建的收敛性能。正则化技术常被用于缓解病态问题。基于具有休伯马尔可夫随机场先验的最大后验统计估计,本研究提出了一种利用图像和噪声统计进行自适应正则化的新方法。自适应休伯正则化解决了蒂霍诺夫正则化中的边缘模糊问题以及全变差(TV)正则化中的块状效应问题。体模实验和体内实验表明,与未正则化的共轭梯度法和蒂霍诺夫正则化法相比,该方法在不增加总计算时间的情况下提高了图像质量和收敛速度。