Yamada Satsuki, Nelson Timothy J, Crespo-Diaz Ruben J, Perez-Terzic Carmen, Liu Xiao-Ke, Miki Takashi, Seino Susumu, Behfar Atta, Terzic Andre
Department of Medicine, Division of Cardiovascular Diseases, Marriott Heart Disease Research Program, Mayo Clinic, Rochester, Minnesota, USA. 55905, USA.
Stem Cells. 2008 Oct;26(10):2644-53. doi: 10.1634/stemcells.2008-0187. Epub 2008 Jul 31.
Pathogenic causes underlying nonischemic cardiomyopathies are increasingly being resolved, yet repair therapies for these commonly heritable forms of heart failure are lacking. A case in point is human dilated cardiomyopathy 10 (CMD10; Online Mendelian Inheritance in Man #608569), a progressive organ dysfunction syndrome refractory to conventional therapies and linked to mutations in cardiac ATP-sensitive K(+) (K(ATP)) channel subunits. Embryonic stem cell therapy demonstrates benefit in ischemic heart disease, but the reparative capacity of this allogeneic regenerative cell source has not been tested in inherited cardiomyopathy. Here, in a Kir6.2-knockout model lacking functional K(ATP) channels, we recapitulated under the imposed stress of pressure overload the gene-environment substrate of CMD10. Salient features of the human malignant heart failure phenotype were reproduced, including compromised contractility, ventricular dilatation, and poor survival. Embryonic stem cells were delivered through the epicardial route into the left ventricular wall of cardiomyopathic stressed Kir6.2-null mutants. At 1 month of therapy, transplantation of 200,000 cells per heart achieved teratoma-free reversal of systolic dysfunction and electrical synchronization and halted maladaptive remodeling, thereby preventing end-stage organ failure. Tracked using the lacZ reporter transgene, stem cells engrafted into host heart. Beyond formation of cardiac tissue positive for Kir6.2, transplantation induced cell cycle activation and halved fibrotic zones, normalizing sarcomeric and gap junction organization within remuscularized hearts. Improved systemic function induced by stem cell therapy translated into increased stamina, absence of anasarca, and benefit to overall survivorship. Embryonic stem cells thus achieve functional repair in nonischemic genetic cardiomyopathy, expanding indications to the therapy of heritable heart failure. Disclosure of potential conflicts of interest is found at the end of this article.
非缺血性心肌病的致病原因正逐渐明晰,但针对这些常见遗传性心力衰竭形式的修复疗法却尚付阙如。一个典型例子是人类扩张型心肌病10型(CMD10;《人类孟德尔遗传在线》编号#608569),这是一种对传统疗法难治的进行性器官功能障碍综合征,与心脏ATP敏感性钾(K(ATP))通道亚基的突变有关。胚胎干细胞疗法在缺血性心脏病中显示出益处,但这种异基因再生细胞源在遗传性心肌病中的修复能力尚未得到测试。在此,在缺乏功能性K(ATP)通道的Kir6.2基因敲除模型中,我们在压力过载的应激条件下重现了CMD10的基因 - 环境底物。人类恶性心力衰竭表型的显著特征得以再现,包括收缩力受损、心室扩张和低生存率。胚胎干细胞通过心外膜途径被输送到患有心肌病应激的Kir6.2基因敲除突变体的左心室壁。在治疗1个月时,每颗心脏移植200,000个细胞实现了无畸胎瘤的收缩功能障碍逆转和电同步,并阻止了适应性不良重塑,从而预防了终末期器官衰竭。利用lacZ报告基因转基因进行追踪,干细胞植入了宿主心脏。除了形成对Kir6.2呈阳性的心脏组织外,移植还诱导了细胞周期激活并使纤维化区域减半,使再肌化心脏内的肌节和缝隙连接组织正常化。干细胞疗法诱导的全身功能改善转化为耐力增加、无全身性水肿,并对总体生存率有益。因此,胚胎干细胞在非缺血性遗传性心肌病中实现了功能修复,将治疗适应症扩展到遗传性心力衰竭。潜在利益冲突的披露见本文末尾。