Suppr超能文献

微小RNA和信使RNA的基因组分析揭示了前列腺癌中微小RNA表达失调的情况。

Genomic profiling of microRNA and messenger RNA reveals deregulated microRNA expression in prostate cancer.

作者信息

Ambs Stefan, Prueitt Robyn L, Yi Ming, Hudson Robert S, Howe Tiffany M, Petrocca Fabio, Wallace Tiffany A, Liu Chang-Gong, Volinia Stefano, Calin George A, Yfantis Harris G, Stephens Robert M, Croce Carlo M

机构信息

Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892-4258, USA.

出版信息

Cancer Res. 2008 Aug 1;68(15):6162-70. doi: 10.1158/0008-5472.CAN-08-0144.

Abstract

MicroRNAs are small noncoding RNAs that regulate the expression of protein-coding genes. To evaluate the involvement of microRNAs in prostate cancer, we determined genome-wide expression of microRNAs and mRNAs in 60 primary prostate tumors and 16 nontumor prostate tissues. The mRNA analysis revealed that key components of microRNA processing and several microRNA host genes, e.g., MCM7 and C9orf5, were significantly up-regulated in prostate tumors. Consistent with these findings, tumors expressed the miR-106b-25 cluster, which maps to intron 13 of MCM7, and miR-32, which maps to intron 14 of C9orf5, at significantly higher levels than nontumor prostate. The expression levels of other microRNAs, including a number of miR-106b-25 cluster homologues, were also altered in prostate tumors. Additional differences in microRNA abundance were found between organ-confined tumors and those with extraprostatic disease extension. Lastly, we found evidence that some microRNAs are androgen-regulated and that tumor microRNAs influence transcript abundance of protein-coding target genes in the cancerous prostate. In cell culture, E2F1 and p21/WAF1 were identified as targets of miR-106b, Bim of miR-32, and exportin-6 and protein tyrosine kinase 9 of miR-1. In summary, microRNA expression becomes altered with the development and progression of prostate cancer. Some of these microRNAs regulate the expression of cancer-related genes in prostate cancer cells.

摘要

微小RNA是一类可调节蛋白质编码基因表达的小型非编码RNA。为评估微小RNA在前列腺癌中的作用,我们测定了60例原发性前列腺肿瘤和16例非肿瘤前列腺组织中微小RNA和信使核糖核酸(mRNA)的全基因组表达情况。mRNA分析显示,微小RNA加工的关键成分以及一些微小RNA宿主基因,如MCM7和C9orf5,在前列腺肿瘤中显著上调。与这些发现一致的是,肿瘤中miR - 106b - 25簇(定位于MCM7的第13内含子)和miR - 32(定位于C9orf5的第14内含子)的表达水平明显高于非肿瘤前列腺组织。包括一些miR - 106b - 25簇同源物在内的其他微小RNA的表达水平在前列腺肿瘤中也发生了改变。在器官局限性肿瘤和伴有前列腺外疾病扩展的肿瘤之间,还发现了微小RNA丰度的其他差异。最后,我们发现有证据表明一些微小RNA受雄激素调节,并且肿瘤微小RNA会影响癌性前列腺中蛋白质编码靶基因的转录本丰度。在细胞培养中,E2F1和p21/WAF1被确定为miR - 106b的靶标,Bim为miR - 32的靶标,exportin - 6和蛋白酪氨酸激酶9为miR - 1的靶标。总之,随着前列腺癌的发生发展,微小RNA表达会发生改变。其中一些微小RNA调节前列腺癌细胞中与癌症相关基因的表达。

相似文献

1
Genomic profiling of microRNA and messenger RNA reveals deregulated microRNA expression in prostate cancer.
Cancer Res. 2008 Aug 1;68(15):6162-70. doi: 10.1158/0008-5472.CAN-08-0144.
3
Functional significance of aberrantly expressed microRNAs in prostate cancer.
Int J Urol. 2015 Mar;22(3):242-52. doi: 10.1111/iju.12700. Epub 2015 Jan 20.
4
The miR-106b-25 polycistron, activated by genomic amplification, functions as an oncogene by suppressing p21 and Bim.
Gastroenterology. 2009 May;136(5):1689-700. doi: 10.1053/j.gastro.2009.02.002.
6
Up-regulation of dicer, a component of the MicroRNA machinery, in prostate adenocarcinoma.
Am J Pathol. 2006 Nov;169(5):1812-20. doi: 10.2353/ajpath.2006.060480.
8
The microRNA -23b/-27b cluster suppresses the metastatic phenotype of castration-resistant prostate cancer cells.
PLoS One. 2012;7(12):e52106. doi: 10.1371/journal.pone.0052106. Epub 2012 Dec 26.
10
MicroRNA-296-5p (miR-296-5p) functions as a tumor suppressor in prostate cancer by directly targeting Pin1.
Biochim Biophys Acta. 2014 Sep;1843(9):2055-66. doi: 10.1016/j.bbamcr.2014.06.001. Epub 2014 Jun 8.

引用本文的文献

1
A Brief Review of MicroRNA Profiling in Human Prostate Cancer Tissues and Plasma.
Biomolecules. 2025 Aug 12;15(8):1156. doi: 10.3390/biom15081156.
2
Global research landscape and emerging trends of non-coding RNAs in prostate cancer: a bibliometric analysis.
Front Pharmacol. 2025 Jan 7;15:1483186. doi: 10.3389/fphar.2024.1483186. eCollection 2024.
4
Role of non-coding RNA in lineage plasticity of prostate cancer.
Cancer Gene Ther. 2025 Jan;32(1):1-10. doi: 10.1038/s41417-024-00834-z. Epub 2024 Nov 4.
5
Advances in sequencing and omics studies in prostate cancer: unveiling molecular pathogenesis and clinical applications.
Front Oncol. 2024 May 10;14:1355551. doi: 10.3389/fonc.2024.1355551. eCollection 2024.
7
miR-182 promotes cervical cancer progression via activating the Wnt/β-catenin axis.
Am J Cancer Res. 2023 Aug 15;13(8):3591-3598. eCollection 2023.
9
MicroRNAs as Mediators of Adipose Thermogenesis and Potential Therapeutic Targets for Obesity.
Biology (Basel). 2022 Nov 13;11(11):1657. doi: 10.3390/biology11111657.
10
microRNA-205 in prostate cancer: Overview to clinical translation.
Biochim Biophys Acta Rev Cancer. 2022 Nov;1877(6):188809. doi: 10.1016/j.bbcan.2022.188809. Epub 2022 Oct 1.

本文引用的文献

1
E2F1-regulated microRNAs impair TGFbeta-dependent cell-cycle arrest and apoptosis in gastric cancer.
Cancer Cell. 2008 Mar;13(3):272-86. doi: 10.1016/j.ccr.2008.02.013.
2
MicroRNAs in the miR-106b family regulate p21/CDKN1A and promote cell cycle progression.
Mol Cell Biol. 2008 Apr;28(7):2167-74. doi: 10.1128/MCB.01977-07. Epub 2008 Jan 22.
3
Endogenous human microRNAs that suppress breast cancer metastasis.
Nature. 2008 Jan 10;451(7175):147-52. doi: 10.1038/nature06487.
4
p21 and p27 induction by silibinin is essential for its cell cycle arrest effect in prostate carcinoma cells.
Mol Cancer Ther. 2007 Oct;6(10):2696-707. doi: 10.1158/1535-7163.MCT-07-0104.
5
Tumour invasion and metastasis initiated by microRNA-10b in breast cancer.
Nature. 2007 Oct 11;449(7163):682-8. doi: 10.1038/nature06174. Epub 2007 Sep 26.
6
Widespread deregulation of microRNA expression in human prostate cancer.
Oncogene. 2008 Mar 13;27(12):1788-93. doi: 10.1038/sj.onc.1210809. Epub 2007 Sep 24.
7
Target mimicry provides a new mechanism for regulation of microRNA activity.
Nat Genet. 2007 Aug;39(8):1033-7. doi: 10.1038/ng2079. Epub 2007 Jul 22.
8
MicroRNA expression profiling in prostate cancer.
Cancer Res. 2007 Jul 1;67(13):6130-5. doi: 10.1158/0008-5472.CAN-07-0533.
9
Oncogenic potential of the miR-106-363 cluster and its implication in human T-cell leukemia.
Cancer Res. 2007 Jun 15;67(12):5699-707. doi: 10.1158/0008-5472.CAN-06-4478.
10
miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kip1.
J Biol Chem. 2007 Aug 10;282(32):23716-24. doi: 10.1074/jbc.M701805200. Epub 2007 Jun 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验