Suppr超能文献

一种针对高等真核生物基因组的修正复制子模型。

A revisionist replicon model for higher eukaryotic genomes.

作者信息

Hamlin J L, Mesner L D, Lar O, Torres R, Chodaparambil S V, Wang L

机构信息

Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908-0733, USA.

出版信息

J Cell Biochem. 2008 Oct 1;105(2):321-9. doi: 10.1002/jcb.21828.

Abstract

The replicon model devised to explain replication control in bacteria has served as the guiding paradigm in the search for origins of replication in the more complex genomes of eukaryotes. In Saccharomyces cerevisiae, this model has proved to be extremely useful, leading to the identification of specific genetic elements (replicators) and the interacting initiator proteins that activate them. However, replication control in organisms ranging from Schizosaccharomyces pombe to mammals is far more fluid: only a small number of origins seem to represent classic replicators, while the majority correspond to zones of inefficient, closely spaced start sites none of which are indispensable for origin activity. In addition, it is apparent that the epigenetic state of a given sequence largely determines its ability to be used as a replication initiation site. These conclusions were arrived at over a period of three decades, and required the development of several novel replicon mapping techniques, as well as new ways of examining the chromatin architecture of any sequence of interest. Recently, methods have been elaborated for isolating all of the active origins in the genomes of higher eukaryotes en masse. Microarray analyses and more recent high-throughput sequencing technology will allow all the origins to be mapped onto the chromosomes of any organism whose genome has been sequenced. With the advent of whole-genome studies on gene expression and chromatin composition, the field is now positioned to define both the genetic and epigenetic rules that govern origin activity.

摘要

为解释细菌复制控制而设计的复制子模型,在寻找真核生物更复杂基因组中的复制起点时,一直是指导范式。在酿酒酵母中,该模型已被证明极为有用,促成了特定遗传元件(复制子)以及激活它们的相互作用起始蛋白的鉴定。然而,从粟酒裂殖酵母到哺乳动物等生物体中的复制控制要灵活得多:只有少数起点似乎代表经典复制子,而大多数对应于低效、紧密间隔的起始位点区域,其中没有一个对于起点活性是不可或缺的。此外,很明显给定序列的表观遗传状态在很大程度上决定了其用作复制起始位点的能力。这些结论是在三十年的时间里得出的,需要开发几种新颖的复制子图谱技术,以及研究任何感兴趣序列染色质结构的新方法。最近,已经详细阐述了用于大规模分离高等真核生物基因组中所有活性起点的方法。微阵列分析和更新的高通量测序技术将使所有起点能够定位到任何已对其基因组进行测序的生物体的染色体上。随着对基因表达和染色质组成的全基因组研究的出现,该领域现在有能力定义支配起点活性的遗传和表观遗传规则。

相似文献

1
A revisionist replicon model for higher eukaryotic genomes.
J Cell Biochem. 2008 Oct 1;105(2):321-9. doi: 10.1002/jcb.21828.
2
[Is the replicon model applicable to higher eukaryotes?].
C R Acad Sci III. 1998 Dec;321(12):961-78. doi: 10.1016/s0764-4469(99)80052-3.
3
Specification of DNA replication origins and genomic base composition in fission yeasts.
J Mol Biol. 2013 Nov 29;425(23):4706-13. doi: 10.1016/j.jmb.2013.09.023. Epub 2013 Oct 3.
4
Isolating apparently pure libraries of replication origins from complex genomes.
Mol Cell. 2006 Mar 3;21(5):719-26. doi: 10.1016/j.molcel.2006.01.015.
5
A winding road to origin discovery.
Chromosome Res. 2010 Jan;18(1):45-61. doi: 10.1007/s10577-009-9089-z.
7
On the nature of replication origins in higher eukaryotes.
Curr Opin Genet Dev. 1995 Apr;5(2):153-61. doi: 10.1016/0959-437x(95)80002-6.
9
DNA replication origins: from sequence specificity to epigenetics.
Nat Rev Genet. 2001 Aug;2(8):640-5. doi: 10.1038/35084598.
10
Extrachromosomal element capture and the evolution of multiple replication origins in archaeal chromosomes.
Proc Natl Acad Sci U S A. 2007 Apr 3;104(14):5806-11. doi: 10.1073/pnas.0700206104. Epub 2007 Mar 28.

引用本文的文献

2
The CMG helicase and cancer: a tumor "engine" and weakness with missing mutations.
Oncogene. 2023 Feb;42(7):473-490. doi: 10.1038/s41388-022-02572-8. Epub 2022 Dec 15.
3
DNA replication timing: Biochemical mechanisms and biological significance.
Bioessays. 2022 Nov;44(11):e2200097. doi: 10.1002/bies.202200097. Epub 2022 Sep 20.
4
Super-resolution microscopy reveals stochastic initiation of replication in Drosophila polytene chromosomes.
Chromosome Res. 2022 Dec;30(4):361-383. doi: 10.1007/s10577-021-09679-w. Epub 2022 Feb 28.
5
Genome-wide mapping of human DNA replication by optical replication mapping supports a stochastic model of eukaryotic replication.
Mol Cell. 2021 Jul 15;81(14):2975-2988.e6. doi: 10.1016/j.molcel.2021.05.024. Epub 2021 Jun 21.
6
Single-cell replication profiling to measure stochastic variation in mammalian replication timing.
Nat Commun. 2018 Jan 30;9(1):427. doi: 10.1038/s41467-017-02800-w.
7
The hunt for origins of DNA replication in multicellular eukaryotes.
F1000Prime Rep. 2015 Mar 3;7:30. doi: 10.12703/P7-30. eCollection 2015.
8
Best practices for mapping replication origins in eukaryotic chromosomes.
Curr Protoc Cell Biol. 2014 Sep 2;64:22.18.1-13. doi: 10.1002/0471143030.cb2218s64.
9
The spatiotemporal program of DNA replication is associated with specific combinations of chromatin marks in human cells.
PLoS Genet. 2014 May 1;10(5):e1004282. doi: 10.1371/journal.pgen.1004282. eCollection 2014 May.
10
The three most important things about origins: location, location, location.
Mol Syst Biol. 2014 Apr 4;10(4):723. doi: 10.1002/msb.145202.

本文引用的文献

1
DNA combing reveals intrinsic temporal disorder in the replication of yeast chromosome VI.
J Mol Biol. 2008 Jan 4;375(1):12-9. doi: 10.1016/j.jmb.2007.10.046. Epub 2007 Oct 23.
3
Isolating apparently pure libraries of replication origins from complex genomes.
Mol Cell. 2006 Mar 3;21(5):719-26. doi: 10.1016/j.molcel.2006.01.015.
5
Chromatin dynamics rule the genome.
Genome Biol. 2005;6(11):355. doi: 10.1186/gb-2005-6-11-355. Epub 2005 Oct 31.
6
Human origins of DNA replication selected from a library of nascent DNA.
Mol Cell. 2005 Aug 19;19(4):567-75. doi: 10.1016/j.molcel.2005.07.005.
7
Silence of the genes--mechanisms of long-term repression.
Nat Rev Genet. 2005 Aug;6(8):648-54. doi: 10.1038/nrg1639.
8
Epigenetic control of replication origins.
Cell Cycle. 2005 Jul;4(7):889-92. doi: 10.4161/cc.4.7.1823. Epub 2005 Jul 5.
9
Promiscuous initiation on mammalian chromosomal DNA templates and its possible suppression by transcription.
Exp Cell Res. 2005 Aug 1;308(1):53-64. doi: 10.1016/j.yexcr.2005.04.012.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验