Suppr超能文献

用于图像传感器电路的纳米线阵列的大规模、异构集成。

Large-scale, heterogeneous integration of nanowire arrays for image sensor circuitry.

作者信息

Fan Zhiyong, Ho Johnny C, Jacobson Zachery A, Razavi Haleh, Javey Ali

机构信息

Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA.

出版信息

Proc Natl Acad Sci U S A. 2008 Aug 12;105(32):11066-70. doi: 10.1073/pnas.0801994105. Epub 2008 Aug 6.

Abstract

We report large-scale integration of nanowires for heterogeneous, multifunctional circuitry that utilizes both the sensory and electronic functionalities of single crystalline nanomaterials. Highly ordered and parallel arrays of optically active CdSe nanowires and high-mobility Ge/Si nanowires are deterministically positioned on substrates, and configured as photodiodes and transistors, respectively. The nanowire sensors and electronic devices are then interfaced to enable an all-nanowire circuitry with on-chip integration, capable of detecting and amplifying an optical signal with high sensitivity and precision. Notably, the process is highly reproducible and scalable with a yield of approximately 80% functional circuits, therefore, enabling the fabrication of large arrays (i.e., 13 x 20) of nanowire photosensor circuitry with image-sensing functionality. The ability to interface nanowire sensors with integrated electronics on large scales and with high uniformity presents an important advance toward the integration of nanomaterials for sensor applications.

摘要

我们报道了用于异质多功能电路的纳米线大规模集成,该电路利用了单晶纳米材料的传感和电子功能。具有光学活性的CdSe纳米线的高度有序且平行的阵列以及高迁移率的Ge/Si纳米线被确定性地定位在基板上,并分别配置为光电二极管和晶体管。然后将纳米线传感器和电子器件连接起来,以实现具有片上集成的全纳米线电路,该电路能够以高灵敏度和精度检测和放大光信号。值得注意的是,该工艺具有高度可重复性和可扩展性,功能电路的成品率约为80%,因此能够制造具有图像传感功能的纳米线光电传感器电路的大型阵列(即13×20)。将纳米线传感器与集成电子器件进行大规模且高度均匀的连接的能力,是纳米材料用于传感器应用集成方面的一项重要进展。

相似文献

1
Large-scale, heterogeneous integration of nanowire arrays for image sensor circuitry.
Proc Natl Acad Sci U S A. 2008 Aug 12;105(32):11066-70. doi: 10.1073/pnas.0801994105. Epub 2008 Aug 6.
2
Nanowire active-matrix circuitry for low-voltage macroscale artificial skin.
Nat Mater. 2010 Oct;9(10):821-6. doi: 10.1038/nmat2835. Epub 2010 Sep 12.
3
4
Silicon Nanowire Field Effect Transistor Sensors with Minimal Sensor-to-Sensor Variations and Enhanced Sensing Characteristics.
ACS Nano. 2018 Jul 24;12(7):6577-6587. doi: 10.1021/acsnano.8b01339. Epub 2018 Jul 5.
6
Hybrid Si nanowire/amorphous silicon FETs for large-area image sensor arrays.
Nano Lett. 2011 Jun 8;11(6):2214-8. doi: 10.1021/nl200114h. Epub 2011 May 17.
7
Programmable nanowire circuits for nanoprocessors.
Nature. 2011 Feb 10;470(7333):240-4. doi: 10.1038/nature09749.
8
Large-scale parallel arrays of silicon nanowires via block copolymer directed self-assembly.
Nanoscale. 2012 May 21;4(10):3228-36. doi: 10.1039/c2nr00018k. Epub 2012 Apr 5.
9
Percolating silicon nanowire networks with highly reproducible electrical properties.
Nanotechnology. 2015 Jan 9;26(1):015201. doi: 10.1088/0957-4484/26/1/015201. Epub 2014 Dec 8.
10
Nanowire and nanotube transistors for lab-on-a-chip applications.
Lab Chip. 2009 Aug 21;9(16):2267-80. doi: 10.1039/b905185f. Epub 2009 Jun 16.

引用本文的文献

1
At the Limit of Interfacial Sharpness in Nanowire Axial Heterostructures.
ACS Nano. 2024 Aug 13;18(32):21171-21183. doi: 10.1021/acsnano.4c04172. Epub 2024 Jul 6.
2
Van der Waals nanomesh electronics on arbitrary surfaces.
Nat Commun. 2023 Apr 27;14(1):2431. doi: 10.1038/s41467-023-38090-8.
3
Development of a highly controlled system for large-area, directional printing of quasi-1D nanomaterials.
Microsyst Nanoeng. 2021 Oct 19;7:82. doi: 10.1038/s41378-021-00314-6. eCollection 2021.
4
Electrically Transduced Gas Sensors Based on Semiconducting Metal Oxide Nanowires.
Sensors (Basel). 2020 Nov 27;20(23):6781. doi: 10.3390/s20236781.
6
Transparent multispectral photodetectors mimicking the human visual system.
Nat Commun. 2019 Nov 1;10(1):4982. doi: 10.1038/s41467-019-12899-8.
7
Heterogeneous integration of contact-printed semiconductor nanowires for high-performance devices on large areas.
Microsyst Nanoeng. 2018 Aug 13;4:22. doi: 10.1038/s41378-018-0021-6. eCollection 2018.
8
Patterned electromagnetic alignment of magnetic nanowires.
Microelectron Eng. 2018 Jun 5;193:71-78. doi: 10.1016/j.mee.2018.02.021. Epub 2018 Feb 21.
9
Wafer-recyclable, environment-friendly transfer printing for large-scale thin-film nanoelectronics.
Proc Natl Acad Sci U S A. 2018 Jul 31;115(31):E7236-E7244. doi: 10.1073/pnas.1806640115. Epub 2018 Jul 16.

本文引用的文献

1
Slice and dice, peel and stick: emerging methods for nanostructure fabrication.
ACS Nano. 2007 Oct;1(3):151-3. doi: 10.1021/nn7002794.
2
Fabrication of fully transparent nanowire transistors for transparent and flexible electronics.
Nat Nanotechnol. 2007 Jun;2(6):378-84. doi: 10.1038/nnano.2007.151. Epub 2007 Jun 3.
3
High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes.
Nat Nanotechnol. 2007 Apr;2(4):230-6. doi: 10.1038/nnano.2007.77. Epub 2007 Mar 25.
4
Sub-100 nanometer channel length Ge/Si nanowire transistors with potential for 2 THz switching speed.
Nano Lett. 2008 Mar;8(3):925-30. doi: 10.1021/nl073407b. Epub 2008 Feb 6.
5
Transparent active matrix organic light-emitting diode displays driven by nanowire transistor circuitry.
Nano Lett. 2008 Apr;8(4):997-1004. doi: 10.1021/nl072538+. Epub 2007 Dec 11.
6
Coaxial silicon nanowires as solar cells and nanoelectronic power sources.
Nature. 2007 Oct 18;449(7164):885-9. doi: 10.1038/nature06181.
7
Printed multilayer superstructures of aligned single-walled carbon nanotubes for electronic applications.
Nano Lett. 2007 Nov;7(11):3343-8. doi: 10.1021/nl071596s. Epub 2007 Oct 13.
8
Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing.
Nano Lett. 2008 Jan;8(1):20-5. doi: 10.1021/nl071626r. Epub 2007 Aug 16.
9
Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors.
Nat Mater. 2007 May;6(5):379-84. doi: 10.1038/nmat1891. Epub 2007 Apr 22.
10
ZnO nanowire UV photodetectors with high internal gain.
Nano Lett. 2007 Apr;7(4):1003-9. doi: 10.1021/nl070111x. Epub 2007 Mar 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验