Ku Shih-pi, Gretton Arthur, Macke Jakob, Logothetis Nikos K
Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany.
Magn Reson Imaging. 2008 Sep;26(7):1007-14. doi: 10.1016/j.mri.2008.02.016.
Pattern recognition methods have shown that functional magnetic resonance imaging (fMRI) data can reveal significant information about brain activity. For example, in the debate of how object categories are represented in the brain, multivariate analysis has been used to provide evidence of a distributed encoding scheme [Science 293:5539 (2001) 2425-2430]. Many follow-up studies have employed different methods to analyze human fMRI data with varying degrees of success [Nature reviews 7:7 (2006) 523-534]. In this study, we compare four popular pattern recognition methods: correlation analysis, support-vector machines (SVM), linear discriminant analysis (LDA) and Gaussian naïve Bayes (GNB), using data collected at high field (7 Tesla) with higher resolution than usual fMRI studies. We investigate prediction performance on single trials and for averages across varying numbers of stimulus presentations. The performance of the various algorithms depends on the nature of the brain activity being categorized: for several tasks, many of the methods work well, whereas for others, no method performs above chance level. An important factor in overall classification performance is careful preprocessing of the data, including dimensionality reduction, voxel selection and outlier elimination.
模式识别方法已表明,功能磁共振成像(fMRI)数据能够揭示有关大脑活动的重要信息。例如,在关于大脑中如何表征物体类别的争论中,多变量分析已被用于提供分布式编码方案的证据[《科学》293:5539(2001)2425 - 2430]。许多后续研究采用了不同方法来分析人类fMRI数据,取得了不同程度的成功[《自然综述》7:7(2006)523 - 534]。在本研究中,我们使用在高场(7特斯拉)收集的数据,其分辨率高于通常的fMRI研究,比较了四种流行的模式识别方法:相关分析、支持向量机(SVM)、线性判别分析(LDA)和高斯朴素贝叶斯(GNB)。我们研究了单次试验以及不同数量刺激呈现平均值的预测性能。各种算法的性能取决于被分类的大脑活动的性质:对于一些任务,许多方法效果良好,而对于其他任务,则没有方法的表现高于随机水平。总体分类性能的一个重要因素是对数据进行仔细的预处理,包括降维、体素选择和异常值消除。