Pillay Ché S, Hofmeyr Jan-Hendrik S, Olivier Brett G, Snoep Jacky L, Rohwer Johann M
Triple-J Group for Molecular Cell Physiology, Department of Biochemistry, Stellenbosch University, ZA-7602 Matieland, Stellenbosch, South Africa.
Biochem J. 2009 Jan 1;417(1):269-75. doi: 10.1042/BJ20080690.
Systems biology approaches, such as kinetic modelling, could provide valuable insights into how thioredoxins, glutaredoxins and peroxiredoxins (here collectively called redoxins), and the systems that reduce these molecules are regulated. However, it is not clear whether redoxins should be described as redox couples (with redox potentials) or as enzymes (with Michaelis-Menten parameters) in such approaches. We show that in complete redoxin systems, redoxin substrate saturation and other purported enzymatic behaviours result from limitations in the redoxin redox cycles in these systems. Michaelis-Menten parameters are therefore inappropriate descriptors of redoxin activity; data from redoxin kinetic experiments should rather be interpreted in terms of the complete system of reactions under study. These findings were confirmed by fitting kinetic models of the thioredoxin and glutaredoxin systems to in vitro datasets. This systems approach clarifies the inconsistencies with the descriptions of redoxins and emphasizes the roles of redoxin systems in redox regulation.
系统生物学方法,如动力学建模,可以为硫氧还蛋白、谷氧还蛋白和过氧化物氧还蛋白(此处统称为氧化还原蛋白)以及还原这些分子的系统是如何被调控的提供有价值的见解。然而,在这些方法中,尚不清楚氧化还原蛋白应被描述为具有氧化还原电位的氧化还原对还是具有米氏参数的酶。我们表明,在完整的氧化还原蛋白系统中,氧化还原蛋白底物饱和及其他所谓的酶促行为是由这些系统中氧化还原蛋白氧化还原循环的局限性导致的。因此,米氏参数并非氧化还原蛋白活性的合适描述符;氧化还原蛋白动力学实验的数据反而应根据所研究的完整反应系统来解释。通过将硫氧还蛋白和谷氧还蛋白系统的动力学模型拟合到体外数据集,证实了这些发现。这种系统方法澄清了与氧化还原蛋白描述相关的不一致之处,并强调了氧化还原蛋白系统在氧化还原调节中的作用。