Suppr超能文献

支持向量机建模中特征选择与参数设置的集成方案及其在药物药代动力学性质预测中的应用

An integrated scheme for feature selection and parameter setting in the support vector machine modeling and its application to the prediction of pharmacokinetic properties of drugs.

作者信息

Yang Sheng-Yong, Huang Qi, Li Lin-Li, Ma Chang-Ying, Zhang Hui, Bai Ru, Teng Qi-Zhi, Xiang Ming-Li, Wei Yu-Quan

机构信息

State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, PR China.

出版信息

Artif Intell Med. 2009 Jun;46(2):155-63. doi: 10.1016/j.artmed.2008.07.001. Epub 2008 Aug 12.

Abstract

OBJECTIVE

Support vector machine (SVM), a statistical learning method, has recently been evaluated in the prediction of absorption, distribution, metabolism, and excretion properties, as well as toxicity (ADMET) of new drugs. However, two problems still remain in SVM modeling, namely feature selection and parameter setting. The two problems have been shown to have an important impact on the efficiency and accuracy of SVM classification. In particular, the feature subset choice and optimal SVM parameter settings influence each other; this suggested that they should be dealt with simultaneously. In this paper, we propose an integrated scheme to account for both feature subset choice and SVM parameter settings in concert.

METHOD

In the proposed scheme, a genetic algorithm (GA) is used for the feature selection and the conjugate gradient (CG) method for the parameter optimization. Several classification models of ADMET related properties have been built for assessing and testing the integrated GA-CG-SVM scheme. They include: (1) identification of P-glycoprotein substrates and nonsubstrates, (2) prediction of human intestinal absorption, (3) prediction of compounds inducing torsades de pointes, and (4) prediction of blood-brain barrier penetration.

RESULTS

Compared with the results of previous SVM studies, our GA-CG-SVM approach significantly improves the overall prediction accuracy and has fewer input features.

CONCLUSIONS

Our results indicate that considering feature selection and parameter optimization simultaneously, in SVM modeling, can help to develop better predictive models for the ADMET properties of drugs.

摘要

目的

支持向量机(SVM)作为一种统计学习方法,最近已被用于评估新药的吸收、分布、代谢和排泄特性以及毒性(ADMET)。然而,SVM建模中仍然存在两个问题,即特征选择和参数设置。这两个问题已被证明对SVM分类的效率和准确性有重要影响。特别是,特征子集的选择和最优SVM参数设置相互影响,这表明它们应该同时处理。在本文中,我们提出了一种综合方案,以同时考虑特征子集选择和SVM参数设置。

方法

在所提出的方案中,使用遗传算法(GA)进行特征选择,并使用共轭梯度(CG)方法进行参数优化。已经建立了几个ADMET相关特性的分类模型,用于评估和测试GA-CG-SVM综合方案。它们包括:(1)P-糖蛋白底物和非底物的识别,(2)人体肠道吸收的预测,(3)诱发尖端扭转型室速化合物的预测,以及(4)血脑屏障穿透的预测。

结果

与先前SVM研究的结果相比,我们的GA-CG-SVM方法显著提高了整体预测准确性,并且输入特征更少。

结论

我们的结果表明,在SVM建模中同时考虑特征选择和参数优化有助于开发更好的药物ADMET特性预测模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验