Lotenberg Shelly, Gordon Shiri, Greenspan Hayit
Department of Biomedical Engineering, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel.
J Digit Imaging. 2009 Jun;22(3):286-96. doi: 10.1007/s10278-008-9134-z. Epub 2008 Aug 14.
The work focuses on a unique medical repository of digital uterine cervix images ("cervigrams") collected by the National Cancer Institute (NCI), National Institute of Health, in longitudinal multiyear studies. NCI together with the National Library of Medicine is developing a unique web-based database of the digitized cervix images to study the evolution of lesions related to cervical cancer. Tools are needed for the automated analysis of the cervigram content to support the cancer research. In recent works, a multistage automated system for segmenting and labeling regions of medical and anatomical interest within the cervigrams was developed. The current paper concentrates on incorporating prior-shape information in the cervix region segmentation task. In accordance with the fact that human experts mark the cervix region as circular or elliptical, two shape models (and corresponding methods) are suggested. The shape models are embedded within an active contour framework that relies on image features. Experiments indicate that incorporation of the prior shape information augments previous results.
这项工作聚焦于美国国立卫生研究院国家癌症研究所(NCI)在多年纵向研究中收集的独特的数字子宫颈图像(“宫颈造影”)医学库。NCI与国立医学图书馆共同开发了一个独特的基于网络的数字化子宫颈图像数据库,以研究与宫颈癌相关病变的演变。需要工具来自动分析宫颈造影内容,以支持癌症研究。在最近的工作中,开发了一个多阶段自动系统,用于分割和标记宫颈造影内医学和解剖学感兴趣的区域。本文主要关注在子宫颈区域分割任务中纳入先验形状信息。根据人类专家将子宫颈区域标记为圆形或椭圆形这一事实,提出了两种形状模型(以及相应的方法)。这些形状模型被嵌入到一个依赖图像特征的主动轮廓框架中。实验表明,纳入先验形状信息增强了先前的结果。