Suppr超能文献

FKBP12与埋藏水之间的结构耦合。

Structural coupling between FKBP12 and buried water.

作者信息

Szep Szilvia, Park Sheldon, Boder Eric T, Van Duyne Gregory D, Saven Jeffery G

机构信息

Department of Biochemistry and Biophysics, Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.

出版信息

Proteins. 2009 Feb 15;74(3):603-11. doi: 10.1002/prot.22176.

Abstract

Globular proteins often contain structurally well-resolved internal water molecules. Previously, we reported results from a molecular dynamics study that suggested that buried water (Wat3) may play a role in modulating the structure of the FK506 binding protein-12 (FKBP12) (Park and Saven, Proteins 2005; 60:450-463). In particular, simulations suggested that disrupting a hydrogen bond to Wat3 by mutating E60 to either A or Q would cause a structural perturbation involving the distant W59 side chain, which rotates to a new conformation in response to the mutation. This effectively remodels the ligand-binding pocket, as the side chain in the new conformation is likely to clash with bound FK506. To test whether the protein structure is in effect modulated by the binding of a buried water in the distance, we determined high-resolution (0.92-1.29 A) structures of wild-type FKBP12 and its two mutants (E60A, E60Q) by X-ray crystallography. The structures of mutant FKBP12 show that the ligand-binding pocket is indeed remodeled as predicted by the substitution at position 60, even though the water molecule does not directly interact with any of the amino acids of the binding pocket. Thus, these structures support the view that buried water molecules constitute an integral, noncovalent component of the protein structure. Additionally, this study provides an example in which predictions from molecular dynamics simulations are experimentally validated with atomic precision, thus showing that the structural features of protein-water interactions can be reliably modeled at a molecular level.

摘要

球状蛋白通常含有结构上解析良好的内部水分子。此前,我们报道了一项分子动力学研究的结果,该研究表明埋藏水(Wat3)可能在调节FK506结合蛋白12(FKBP12)的结构中发挥作用(Park和Saven,《蛋白质》2005年;60:450 - 463)。特别是,模拟表明将E60突变为A或Q以破坏与Wat3的氢键会导致涉及远处W59侧链的结构扰动,该侧链会因突变而旋转到新的构象。这有效地重塑了配体结合口袋,因为新构象中的侧链可能会与结合的FK506发生冲突。为了测试蛋白质结构是否实际上受到远处埋藏水结合的调节,我们通过X射线晶体学确定了野生型FKBP12及其两个突变体(E60A、E60Q)的高分辨率(0.92 - 1.29埃)结构。突变型FKBP12的结构表明,即使水分子不与结合口袋的任何氨基酸直接相互作用,配体结合口袋确实如60位取代所预测的那样被重塑。因此,这些结构支持了埋藏水分子构成蛋白质结构不可或缺的非共价成分的观点。此外,这项研究提供了一个例子,其中分子动力学模拟的预测通过原子精度得到了实验验证,从而表明蛋白质 - 水相互作用的结构特征可以在分子水平上可靠地建模。

相似文献

1
Structural coupling between FKBP12 and buried water.
Proteins. 2009 Feb 15;74(3):603-11. doi: 10.1002/prot.22176.
2
Statistical and molecular dynamics studies of buried waters in globular proteins.
Proteins. 2005 Aug 15;60(3):450-63. doi: 10.1002/prot.20511.
3
Multi-timescale dynamics study of FKBP12 along the rapamycin-mTOR binding coordinate.
J Mol Biol. 2011 Jan 14;405(2):378-94. doi: 10.1016/j.jmb.2010.10.037. Epub 2010 Nov 10.
4
Conformational Entropy of FK506 Binding to FKBP12 Determined by Nuclear Magnetic Resonance Relaxation and Molecular Dynamics Simulations.
Biochemistry. 2018 Mar 6;57(9):1451-1461. doi: 10.1021/acs.biochem.7b01256. Epub 2018 Feb 14.
5
FKBP12 dimerization mutations effect FK506 binding and differentially alter calcineurin inhibition in the human pathogen Aspergillus fumigatus.
Biochem Biophys Res Commun. 2020 May 21;526(1):48-54. doi: 10.1016/j.bbrc.2020.03.062. Epub 2020 Mar 16.
6
Energetic and structural analysis of the role of tryptophan 59 in FKBP12.
Biochemistry. 2003 Mar 4;42(8):2364-72. doi: 10.1021/bi020564a.
7
The full electron structure of the FKBP12/FK506 complex.
J Biomol Struct Dyn. 2015;33(2):388-94. doi: 10.1080/07391102.2014.880374. Epub 2014 Jan 28.
8
Dynamics of Aromatic Side Chains in the Active Site of FKBP12.
Biochemistry. 2017 Jan 10;56(1):334-343. doi: 10.1021/acs.biochem.6b01157. Epub 2016 Dec 22.
9
Differential Large-Amplitude Breathing Motions in the Interface of FKBP12-Drug Complexes.
Biochemistry. 2015 Dec 1;54(47):6983-95. doi: 10.1021/acs.biochem.5b00820. Epub 2015 Nov 18.
10
Structural characterization of the RyR1-FKBP12 interaction.
J Mol Biol. 2006 Mar 3;356(4):917-27. doi: 10.1016/j.jmb.2005.12.023. Epub 2005 Dec 27.

引用本文的文献

1
OsFKBP12 transduces the sucrose signal from OsNIN8 to the OsTOR pathway in a loosely binding manner for cell division.
iScience. 2024 Dec 9;28(1):111555. doi: 10.1016/j.isci.2024.111555. eCollection 2025 Jan 17.
2
Map conformational landscapes of intrinsically disordered proteins with polymer physics quantities.
Biophys J. 2024 May 21;123(10):1253-1263. doi: 10.1016/j.bpj.2024.04.010. Epub 2024 Apr 12.
3
Propagation of conformational instability in FK506-binding protein FKBP12.
Biochim Biophys Acta Proteins Proteom. 2024 May 1;1872(3):140990. doi: 10.1016/j.bbapap.2023.140990. Epub 2023 Dec 23.
4
Chemical remodeling of a cellular chaperone to target the active state of mutant KRAS.
Science. 2023 Aug 18;381(6659):794-799. doi: 10.1126/science.adg9652. Epub 2023 Aug 17.
5
Single-molecule fingerprinting of protein-drug interaction using a funneled biological nanopore.
Nat Commun. 2023 Apr 4;14(1):1461. doi: 10.1038/s41467-023-37098-4.
6
RosettaDDGPrediction for high-throughput mutational scans: From stability to binding.
Protein Sci. 2023 Jan;32(1):e4527. doi: 10.1002/pro.4527.
7
Structural features of chloroplast trigger factor determined at 2.6 Å resolution.
Acta Crystallogr D Struct Biol. 2022 Oct 1;78(Pt 10):1259-1272. doi: 10.1107/S2059798322009068. Epub 2022 Sep 27.
9
Environment-Specific Force Field for Intrinsically Disordered and Ordered Proteins.
J Chem Inf Model. 2020 Apr 27;60(4):2257-2267. doi: 10.1021/acs.jcim.0c00059. Epub 2020 Apr 7.
10
Ubiquitylation Directly Induces Fold Destabilization of Proteins.
Sci Rep. 2016 Dec 19;6:39453. doi: 10.1038/srep39453.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.
3
SHELXL: high-resolution refinement.
Methods Enzymol. 1997;277:319-43.
4
The entropic cost of bound water in crystals and biomolecules.
Science. 1994 Apr 29;264(5159):670. doi: 10.1126/science.264.5159.670.
6
Zinc coordination environments in proteins determine zinc functions.
J Trace Elem Med Biol. 2005;19(1):7-12. doi: 10.1016/j.jtemb.2005.02.003.
7
Statistical and molecular dynamics studies of buried waters in globular proteins.
Proteins. 2005 Aug 15;60(3):450-63. doi: 10.1002/prot.20511.
9
Coot: model-building tools for molecular graphics.
Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32. doi: 10.1107/S0907444904019158. Epub 2004 Nov 26.
10
Refinement of macromolecular structures by the maximum-likelihood method.
Acta Crystallogr D Biol Crystallogr. 1997 May 1;53(Pt 3):240-55. doi: 10.1107/S0907444996012255.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验