Zhang Qingye, Yang Jiaoyan, Liang Kun, Feng Lingling, Li Sanpin, Wan Jian, Xu Xin, Yang Guangfu, Liu Deli, Yang Shao
Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China.
J Chem Inf Model. 2008 Sep;48(9):1802-12. doi: 10.1021/ci800041k. Epub 2008 Aug 16.
Recently, the worldwide spread of A/H5N1 avian influenza with high virulence has highlighted the potential threat of human influenza pandemic. Tamiflu and Relenza are currently the only two anti-influenza drugs targeting the neuraminidase (NA) enzyme of human influenza virus. Reports of the emergence of drug resistance further make the development of new potent anti-influenza inhibitors a priority. The X-ray crystallographic study of A/H5N1 avian influenza NA subtypes (Russell, R. J. Nature 2006, 443, 45-49) has demonstrated that there exist two genetically distinct groups, group-1 (N1, N4, N5 and N8) and group-2 (N2, N3, N6, N7 and N9), whose conformations are substantially different. The detailed comparison of their active sites has established, heretofore, the most accurate and solid molecular basis of structure and mechanism for the development of new anti-influenza drugs. In the present study, a three-dimensional structure of N1 subtype of human influenza type A virus (N1hA) has been generated by homology modeling using the X-ray crystallographic structure of N1 subtype of avian influenza virus (N1aA) as the template. Binding interaction analysis between the active site and its inhibitors has been performed by combining ab initio fragment molecular orbital (FMO) calculations and three-dimensional quantitative structure-activity relationship with comparative molecular field analysis (3D-QSAR CoMFA) modeling. Integrated with docking-based 3D-QSAR CoMFA modeling, molecular surface property (electrostatic and steric) mapping and FMO pair interaction analysis, a set of new receptor-ligand binding models and bioaffinity predictive models for rational design and virtual screening of more potent inhibitors of N1hA are established. In addition, the flexibility of the loop-150 of N1hA and N1aA has been examined by a series of molecular dynamics simulations.
最近,高致病性A/H5N1禽流感在全球范围内的传播凸显了人类流感大流行的潜在威胁。达菲和瑞乐沙是目前仅有的两种针对人类流感病毒神经氨酸酶(NA)的抗流感药物。耐药性出现的报道进一步使开发新型强效抗流感抑制剂成为当务之急。对A/H5N1禽流感NA亚型的X射线晶体学研究(拉塞尔,R.J.《自然》2006年,443卷,45 - 49页)表明,存在两个基因不同的组,第1组(N1、N4、N5和N8)和第2组(N2、N3、N6、N7和N9),它们的构象有很大差异。此前,对它们活性位点的详细比较为开发新型抗流感药物建立了最准确、最坚实的结构和机制分子基础。在本研究中,以禽流感病毒N1亚型(N1aA)的X射线晶体学结构为模板,通过同源建模生成了甲型流感病毒N1亚型(N1hA)的三维结构。通过结合从头算片段分子轨道(FMO)计算以及三维定量构效关系与比较分子场分析(3D - QSAR CoMFA)建模,对活性位点与其抑制剂之间的结合相互作用进行了分析。结合基于对接的3D - QSAR CoMFA建模、分子表面性质(静电和空间)映射以及FMO对相互作用分析,建立了一组新的受体 - 配体结合模型和生物亲和力预测模型,用于合理设计和虚拟筛选更有效的N1hA抑制剂。此外,通过一系列分子动力学模拟研究了N1hA和N1aA的150环的灵活性。