Hussain Mahmud M, Walsh Patrick J
P. Roy and Diane T. Vagelos Laboratories, University of Pennsylvania, Department of Chemistry, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, USA.
Acc Chem Res. 2008 Aug;41(8):883-93. doi: 10.1021/ar800006h.
[Reaction: see text] In 1980, Sharpless and Katsuki introduced the asymmetric epoxidation of prochiral allylic alcohols (the Sharpless-Katsuki asymmetric epoxidation), which enabled the rapid synthesis of highly enantioenriched epoxy alcohols. This reaction was a milestone in the development of asymmetric catalysis because it was the first highly enantioselective oxidation reaction. Furthermore, it provided access to enantioenriched allylic alcohols that are now standard starting materials in natural product synthesis. In 1981, Sharpless and co-workers made another seminal contribution by describing the kinetic resolution (KR) of racemic allylic alcohols. This work demonstrated that small-molecule catalysts could compete with enzymatic catalysts in KRs. For these pioneering works, Sharpless was awarded the 2001 Nobel Prize with Knowles and Noyori. Despite these achievements, the Sharpless KR is not an efficient method to prepare epoxy alcohols with high enantiomeric excess (ee). First, the racemic allylic alcohol must be prepared and purified. KR of the racemic allylic alcohol must be stopped at low conversion, because the ee of the product epoxy alcohol decreases as the KR progresses. Thus, better methods to prepare epoxy alcohols containing stereogenic carbinol carbons are needed. This Account summarizes our efforts to develop one-pot methods for the synthesis of various epoxy alcohols and allylic epoxy alcohols with high enantio-, diastereo-, and chemoselectivity. Our laboratory developed titanium-based catalysts for use in the synthesis of epoxy alcohols with tertiary carbinols. The catalysts are involved in the first step, which is an asymmetric alkyl or allyl addition to enones. The resulting intermediates are then subjected to a titanium-directed diastereoselective epoxidation to provide tertiary epoxy alcohols. Similarly, the synthesis of acyclic epoxy alcohols begins with asymmetric additions to enals and subsequent epoxidation. The methods described here enable the synthesis of skeletally diverse epoxy alcohols.
[反应:见正文] 1980年,夏普莱斯(Sharpless)和胜木(Katsuki)引入了前手性烯丙醇的不对称环氧化反应(夏普莱斯-胜木不对称环氧化反应),该反应能够快速合成高度对映体富集的环氧醇。此反应是不对称催化发展历程中的一个里程碑,因为它是首个具有高度对映选择性的氧化反应。此外,它提供了获取对映体富集烯丙醇的途径,这些烯丙醇如今是天然产物合成中的标准起始原料。1981年,夏普莱斯及其同事通过描述外消旋烯丙醇的动力学拆分(KR)又做出了一项开创性贡献。这项工作表明小分子催化剂在动力学拆分中可以与酶催化剂相竞争。由于这些开创性工作,夏普莱斯与诺尔斯(Knowles)和野依良治(Noyori)共同获得了2001年诺贝尔奖。尽管取得了这些成就,但夏普莱斯动力学拆分并不是制备高对映体过量(ee)环氧醇的有效方法。首先,必须制备并纯化外消旋烯丙醇。外消旋烯丙醇的动力学拆分必须在低转化率时停止,因为随着动力学拆分的进行,产物环氧醇的对映体过量会降低。因此,需要更好的方法来制备含有手性甲醇碳的环氧醇。本综述总结了我们为开发一锅法合成各种具有高对映、非对映和化学选择性的环氧醇和烯丙基环氧醇所做的努力。我们实验室开发了用于合成含有叔醇的环氧醇的钛基催化剂。这些催化剂参与第一步反应,即对烯酮进行不对称烷基或烯丙基加成。然后将所得中间体进行钛导向的非对映选择性环氧化以得到叔环氧醇。类似地,无环环氧醇的合成始于对烯醛的不对称加成以及随后的环氧化。这里描述的方法能够合成骨架多样的环氧醇。