Suppr超能文献

突变率进化的细胞、发育和群体遗传学决定因素。

The cellular, developmental and population-genetic determinants of mutation-rate evolution.

作者信息

Lynch Michael

机构信息

Department of Biology, Indiana University, Bloomington, Indiana 47405, USA.

出版信息

Genetics. 2008 Oct;180(2):933-43. doi: 10.1534/genetics.108.090456. Epub 2008 Aug 30.

Abstract

Although the matter has been subject to considerable theoretical study, there are numerous open questions regarding the mechanisms driving the mutation rate in various phylogenetic lineages. Most notably, empirical evidence indicates that mutation rates are elevated in multicellular species relative to unicellular eukaryotes and prokaryotes, even on a per-cell division basis, despite the need for the avoidance of somatic damage and the accumulation of germline mutations. Here it is suggested that multicellularity discourages selection against weak mutator alleles for reasons associated with both the cellular and the population-genetic environments, thereby magnifying the vulnerability to somatic mutations (cancer) and increasing the risk of extinction from the accumulation of germline mutations. Moreover, contrary to common belief, a cost of fidelity need not be invoked to explain the lower bound to observed mutation rates, which instead may simply be set by the inability of selection to advance very weakly advantageous antimutator alleles in finite populations.

摘要

尽管该问题已受到大量理论研究,但关于驱动不同系统发育谱系中突变率的机制仍存在众多未解决的问题。最值得注意的是,经验证据表明,即使按每个细胞分裂计算,多细胞物种中的突变率相对于单细胞真核生物和原核生物也有所升高,尽管需要避免体细胞损伤和生殖系突变的积累。本文认为,由于细胞和群体遗传环境相关的原因,多细胞性不利于对弱突变等位基因进行选择,从而放大了对体细胞突变(癌症)的易感性,并增加了因生殖系突变积累而灭绝的风险。此外,与普遍看法相反,无需引入保真度成本来解释观察到的突变率下限,相反,这可能仅仅是由于选择在有限群体中无法推进非常微弱有利的抗突变等位基因所致。

相似文献

1
The cellular, developmental and population-genetic determinants of mutation-rate evolution.
Genetics. 2008 Oct;180(2):933-43. doi: 10.1534/genetics.108.090456. Epub 2008 Aug 30.
2
Evolution of Mutation Rates in Rapidly Adapting Asexual Populations.
Genetics. 2016 Nov;204(3):1249-1266. doi: 10.1534/genetics.116.193565. Epub 2016 Sep 19.
3
Role of mutator alleles in adaptive evolution.
Nature. 1997 Jun 12;387(6634):700-2. doi: 10.1038/42696.
5
Selective Strolls: Fixation and Extinction in Diploids Are Slower for Weakly Selected Mutations Than for Neutral Ones.
Genetics. 2015 Dec;201(4):1581-9. doi: 10.1534/genetics.115.178160. Epub 2015 Oct 23.
6
Sexual selection, germline mutation rate and sperm competition.
BMC Evol Biol. 2003 Apr 18;3:6. doi: 10.1186/1471-2148-3-6.
7
Experimental evolution and the dynamics of genomic mutation rate modifiers.
Heredity (Edinb). 2014 Nov;113(5):375-80. doi: 10.1038/hdy.2014.49. Epub 2014 May 21.
8
Molecular footprint of Medawar's mutation accumulation process in mammalian aging.
Aging Cell. 2019 Aug;18(4):e12965. doi: 10.1111/acel.12965. Epub 2019 May 6.
9
Mutating away from your enemies: the evolution of mutation rate in a host-parasite system.
Theor Popul Biol. 2009 Jun;75(4):301-11. doi: 10.1016/j.tpb.2009.03.003. Epub 2009 Mar 31.
10
Fitness evolution and the rise of mutator alleles in experimental Escherichia coli populations.
Genetics. 2002 Oct;162(2):557-66. doi: 10.1093/genetics/162.2.557.

引用本文的文献

1
A narrow range of transcript-error rates across the Tree of Life.
Sci Adv. 2025 Jul 11;11(28):eadv9898. doi: 10.1126/sciadv.adv9898.
2
Population size interacts with reproductive longevity to shape the germline mutation rate.
Proc Natl Acad Sci U S A. 2025 May 27;122(21):e2423311122. doi: 10.1073/pnas.2423311122. Epub 2025 May 20.
3
A Narrow Range of Transcript-error Rates Across the Tree of Life.
bioRxiv. 2025 Jan 14:2023.05.02.538944. doi: 10.1101/2023.05.02.538944.
4
Population size interacts with reproductive longevity to shape the germline mutation rate.
bioRxiv. 2024 Nov 9:2023.12.06.570457. doi: 10.1101/2023.12.06.570457.
5
Direct and indirect selection in a proofreading polymerase.
bioRxiv. 2024 Oct 15:2024.10.14.618309. doi: 10.1101/2024.10.14.618309.
6
Coevolution of longevity and female germline maintenance.
Proc Biol Sci. 2024 Jun;291(2024):20240532. doi: 10.1098/rspb.2024.0532. Epub 2024 Jun 12.
7
The Evolutionary Interplay of Somatic and Germline Mutation Rates.
Annu Rev Biomed Data Sci. 2024 Aug;7(1):83-105. doi: 10.1146/annurev-biodatasci-102523-104225. Epub 2024 Jul 24.
9
The divergence of mutation rates and spectra across the Tree of Life.
EMBO Rep. 2023 Oct 9;24(10):e57561. doi: 10.15252/embr.202357561. Epub 2023 Aug 24.
10
Experimental estimates of germline mutation rate in eukaryotes: a phylogenetic meta-analysis.
Evol Lett. 2023 Jun 19;7(4):216-226. doi: 10.1093/evlett/qrad027. eCollection 2023 Aug.

本文引用的文献

1
PERSPECTIVE: SPONTANEOUS DELETERIOUS MUTATION.
Evolution. 1999 Jun;53(3):645-663. doi: 10.1111/j.1558-5646.1999.tb05361.x.
2
The rate and spectrum of microsatellite mutation in Caenorhabditis elegans and Daphnia pulex.
Genetics. 2008 Apr;178(4):2113-21. doi: 10.1534/genetics.107.081927.
4
Mechanisms and functions of DNA mismatch repair.
Cell Res. 2008 Jan;18(1):85-98. doi: 10.1038/cr.2007.115.
5
The origins and early evolution of DNA mismatch repair genes--multiple horizontal gene transfers and co-evolution.
Nucleic Acids Res. 2007;35(22):7591-603. doi: 10.1093/nar/gkm921. Epub 2007 Oct 26.
7
Mutation rate variation in multicellular eukaryotes: causes and consequences.
Nat Rev Genet. 2007 Aug;8(8):619-31. doi: 10.1038/nrg2158.
8
The distribution of fitness effects of new mutations.
Nat Rev Genet. 2007 Aug;8(8):610-8. doi: 10.1038/nrg2146.
9
The effects of MSH2 deficiency on spontaneous and radiation-induced mutation rates in the mouse germline.
Mutat Res. 2007 Apr 1;617(1-2):147-51. doi: 10.1016/j.mrfmmm.2007.01.010. Epub 2007 Jan 30.
10
Highly tolerated amino acid substitutions increase the fidelity of Escherichia coli DNA polymerase I.
J Biol Chem. 2007 Apr 20;282(16):12201-9. doi: 10.1074/jbc.M611294200. Epub 2007 Feb 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验