Suppr超能文献

底物通过连接远端位点引导酶动力学:尿苷二磷酸半乳糖吡喃糖变位酶。

Substrate directs enzyme dynamics by bridging distal sites: UDP-galactopyranose mutase.

作者信息

Yao Xiaohui, Bleile Dustin W, Yuan Yue, Chao Jay, Sarathy Karunan P, Sanders David A R, Pinto B Mario, O'Neill Melanie A

机构信息

Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6.

出版信息

Proteins. 2009 Mar;74(4):972-9. doi: 10.1002/prot.22206.

Abstract

UDP-Galactopyranose mutase (UGM) is a flavoenzyme that catalyzes interconversion of UDP-galactopyranose (UDP-Galp) and UDP-galactofuranose (UDP-Galf); its activity depends on FAD redox state. The enzyme is vital to many pathogens, not native to mammals, and is an important drug target. We have probed binding of substrate, UDP-Galp, and UDP to wild type and W160A UGM from K. pneumoniae, and propose that substrate directs recognition loop dynamics by bridging distal FAD and W160 sites; W160 interacts with uracil of the substrate and is functionally essential. Enhanced Trp fluorescence upon substrate binding to UGM indicates conformational changes remote from the binding site because the fluorescence is unchanged upon binding to W70F/W290F UGM where W160 is the sole Trp. MD simulations map these changes to recognition loop closure to coordinate substrate. This requires galactose-FAD interactions as Trp fluorescence is unchanged upon substrate binding to oxidized UGM, or binding of UDP to either form of the enzyme, and MD show heightened recognition loop mobility in complexes with UDP. Consistent with substrate-directed loop closure, UDP binds 10-fold more tightly to oxidized UGM, yet substrate binds tighter to reduced UGM. This requires the W160-U interaction because redox-switched binding affinity of substrate reverses in the W160A mutant where it only binds when oxidized. Without the anchoring W160-U interaction, an alternative binding mode for UDP is detected, and STD-NMR experiments show simultaneous binding of UDP-Galp and UDP to different subsites in oxidized W160A UGM: Substrate no longer directs recognition loop dynamics to coordinate tight binding to the reduced enzyme.

摘要

UDP-吡喃半乳糖变位酶(UGM)是一种黄素酶,催化UDP-吡喃半乳糖(UDP-Galp)和UDP-呋喃半乳糖(UDP-Galf)的相互转化;其活性取决于黄素腺嘌呤二核苷酸(FAD)的氧化还原状态。该酶对许多非哺乳动物天然存在的病原体至关重要,是一个重要的药物靶点。我们研究了底物UDP-Galp和UDP与肺炎克雷伯菌野生型和W160A UGM的结合,并提出底物通过桥接远端FAD和W160位点来指导识别环动力学;W160与底物的尿嘧啶相互作用,在功能上至关重要。底物与UGM结合时色氨酸荧光增强,表明远离结合位点的构象发生了变化,因为与W70F/W290F UGM结合时荧光不变,而W160是唯一的色氨酸。分子动力学(MD)模拟将这些变化映射到识别环的闭合以协调底物。这需要半乳糖-FAD相互作用,因为底物与氧化型UGM结合、或UDP与任何一种酶形式结合时色氨酸荧光不变,且MD显示与UDP形成的复合物中识别环的流动性增强。与底物指导的环闭合一致,UDP与氧化型UGM的结合亲和力高10倍,但底物与还原型UGM的结合更紧密。这需要W160-尿嘧啶相互作用,因为底物的氧化还原转换结合亲和力在W160A突变体中发生逆转,在该突变体中它仅在氧化时结合。没有锚定的W160-尿嘧啶相互作用时,检测到UDP的另一种结合模式,并且饱和转移差核磁共振(STD-NMR)实验表明UDP-Galp和UDP同时结合到氧化型W160A UGM的不同亚位点:底物不再指导识别环动力学以协调与还原型酶的紧密结合。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验