Suppr超能文献

用于三维物体分类的结构和特定视角表示。

Structural and view-specific representations for the categorization of three-dimensional objects.

作者信息

Rentschler Ingo, Gschwind Markus, Brettel Hans, Osman Erol, Caelli Terry

机构信息

Institute of Medical Psychology, University of Munich, Goethestrasse 31, 80336 München, Germany.

出版信息

Vision Res. 2008 Nov;48(25):2501-8. doi: 10.1016/j.visres.2008.08.009. Epub 2008 Oct 2.

Abstract

It has been debated whether object recognition depends on structural or view-specific representations. This issue is revisited here using a paradigm of priming, supervised category learning, and generalization to novel viewpoints. Results show that structural representations can be learned for three-dimensional (3D) objects lacking generalized-cone components (geons). Metric relations between object parts are distinctive features under such conditions. Representations preserving 3D structure are learned provided prior knowledge of object shape and sufficient image input information is available; otherwise view-specific representations are generated. These findings indicate that structural and view-specific representations are related through shifts of representation induced by learning.

摘要

物体识别是依赖于结构表征还是特定视角表征一直存在争议。本文使用启动、监督类别学习以及向新视角泛化的范式重新审视了这个问题。结果表明,对于缺乏广义锥组件(geons)的三维(3D)物体,可以学习到结构表征。在这种情况下,物体各部分之间的度量关系是独特的特征。如果有物体形状的先验知识和足够的图像输入信息,就可以学习到保留3D结构的表征;否则就会生成特定视角的表征。这些发现表明,结构表征和特定视角表征是通过学习引起的表征转变而相关联的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验