Suppr超能文献

碳纳米管作为活体小鼠光声分子成像剂

Carbon nanotubes as photoacoustic molecular imaging agents in living mice.

作者信息

De la Zerda Adam, Zavaleta Cristina, Keren Shay, Vaithilingam Srikant, Bodapati Sunil, Liu Zhuang, Levi Jelena, Smith Bryan R, Ma Te-Jen, Oralkan Omer, Cheng Zhen, Chen Xiaoyuan, Dai Hongjie, Khuri-Yakub Butrus T, Gambhir Sanjiv S

出版信息

Nat Nanotechnol. 2008 Sep;3(9):557-62. doi: 10.1038/nnano.2008.231. Epub 2008 Aug 17.

Abstract

Photoacoustic imaging of living subjects offers higher spatial resolution and allows deeper tissues to be imaged compared with most optical imaging techniques. As many diseases do not exhibit a natural photoacoustic contrast, especially in their early stages, it is necessary to administer a photoacoustic contrast agent. A number of contrast agents for photoacoustic imaging have been suggested previously, but most were not shown to target a diseased site in living subjects. Here we show that single-walled carbon nanotubes conjugated with cyclic Arg-Gly-Asp (RGD) peptides can be used as a contrast agent for photoacoustic imaging of tumours. Intravenous administration of these targeted nanotubes to mice bearing tumours showed eight times greater photoacoustic signal in the tumour than mice injected with non-targeted nanotubes. These results were verified ex vivo using Raman microscopy. Photoacoustic imaging of targeted single-walled carbon nanotubes may contribute to non-invasive cancer imaging and monitoring of nanotherapeutics in living subjects.

摘要

与大多数光学成像技术相比,活体受试者的光声成像具有更高的空间分辨率,并且能够对更深层的组织进行成像。由于许多疾病,尤其是在早期阶段,不会表现出自然的光声对比度,因此有必要注射光声造影剂。此前人们已经提出了许多用于光声成像的造影剂,但大多数都未被证明能在活体受试者中靶向病变部位。在此我们表明,与环Arg-Gly-Asp(RGD)肽缀合的单壁碳纳米管可作为肿瘤光声成像的造影剂。将这些靶向纳米管静脉注射到荷瘤小鼠体内后,肿瘤部位的光声信号比注射非靶向纳米管的小鼠高八倍。这些结果通过拉曼显微镜在体外得到了验证。靶向单壁碳纳米管的光声成像可能有助于对活体受试者进行非侵入性癌症成像以及纳米治疗的监测。

相似文献

1
Carbon nanotubes as photoacoustic molecular imaging agents in living mice.
Nat Nanotechnol. 2008 Sep;3(9):557-62. doi: 10.1038/nnano.2008.231. Epub 2008 Aug 17.
2
Family of enhanced photoacoustic imaging agents for high-sensitivity and multiplexing studies in living mice.
ACS Nano. 2012 Jun 26;6(6):4694-701. doi: 10.1021/nn204352r. Epub 2012 May 31.
4
Carbon nanotubes for biomedical imaging: the recent advances.
Adv Drug Deliv Rev. 2013 Dec;65(15):1951-63. doi: 10.1016/j.addr.2013.10.002. Epub 2013 Oct 30.
7
Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents.
Nat Nanotechnol. 2009 Oct;4(10):688-94. doi: 10.1038/nnano.2009.231. Epub 2009 Aug 23.
8
Single-walled carbon nanotubes as a multimodal-thermoacoustic and photoacoustic-contrast agent.
J Biomed Opt. 2009 May-Jun;14(3):034018. doi: 10.1117/1.3147407.
9
Noninvasive Raman spectroscopy in living mice for evaluation of tumor targeting with carbon nanotubes.
Nano Lett. 2008 Sep;8(9):2800-5. doi: 10.1021/nl801362a. Epub 2008 Aug 7.
10
Photoacoustic imaging enhanced by indocyanine green-conjugated single-wall carbon nanotubes.
J Biomed Opt. 2013 Sep;18(9):096006. doi: 10.1117/1.JBO.18.9.096006.

引用本文的文献

2
Sharp-peaked lanthanide nanocrystals for near-infrared photoacoustic multiplexed differential imaging.
Commun Mater. 2024;5. doi: 10.1038/s43246-024-00605-1. Epub 2024 Aug 21.
3
Recent progress in ROS-responsive biomaterials for the diagnosis and treatment of cardiovascular diseases.
Theranostics. 2025 Apr 11;15(11):5172-5219. doi: 10.7150/thno.106991. eCollection 2025.
5
Deep Mouse Brain Two-Photon Near-Infrared Fluorescence Imaging Using a Superconducting Nanowire Single-Photon Detector Array.
ACS Photonics. 2024 Sep 11;11(10):3960-3971. doi: 10.1021/acsphotonics.4c00111. eCollection 2024 Oct 16.
7
Cancer cell membrane-coated nanoparticles: a promising anti-tumor bionic platform.
RSC Adv. 2024 Apr 2;14(15):10608-10637. doi: 10.1039/d4ra01026d. eCollection 2024 Mar 26.
8
Biomedical Applications of CNT-Based Fibers.
Biosensors (Basel). 2024 Mar 7;14(3):137. doi: 10.3390/bios14030137.
9
Enhancing in vitro photothermal therapy using plasmonic gold nanorod decorated multiwalled carbon nanotubes.
Biomed Opt Express. 2023 Nov 30;14(12):6629-6643. doi: 10.1364/BOE.504746. eCollection 2023 Dec 1.
10
Convolutional sparse coding for compressed sensing photoacoustic CT reconstruction with partially known support.
Biomed Opt Express. 2024 Jan 2;15(2):524-539. doi: 10.1364/BOE.507831. eCollection 2024 Feb 1.

本文引用的文献

2
A pilot toxicology study of single-walled carbon nanotubes in a small sample of mice.
Nat Nanotechnol. 2008 Apr;3(4):216-21. doi: 10.1038/nnano.2008.68. Epub 2008 Mar 30.
3
In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice.
Nat Nanotechnol. 2007 Jan;2(1):47-52. doi: 10.1038/nnano.2006.170. Epub 2006 Dec 17.
4
A comparison between a time domain and continuous wave small animal optical imaging system.
IEEE Trans Med Imaging. 2008 Jan;27(1):58-63. doi: 10.1109/TMI.2007.902800.
5
Photoacoustic tomography of a rat cerebral cortex in vivo with au nanocages as an optical contrast agent.
Nano Lett. 2007 Dec;7(12):3798-802. doi: 10.1021/nl072349r. Epub 2007 Nov 20.
7
Indocyanine-green-embedded PEBBLEs as a contrast agent for photoacoustic imaging.
J Biomed Opt. 2007 Jul-Aug;12(4):044020. doi: 10.1117/1.2771530.
8
Photoacoustic imaging of multiple targets using gold nanorods.
IEEE Trans Ultrason Ferroelectr Freq Control. 2007 Aug;54(8):1642-7. doi: 10.1109/tuffc.2007.435.
9
High sensitivity of in vivo detection of gold nanorods using a laser optoacoustic imaging system.
Nano Lett. 2007 Jul;7(7):1914-8. doi: 10.1021/nl070557d. Epub 2007 Jun 15.
10
Imaging acute thermal burns by photoacoustic microscopy.
J Biomed Opt. 2006 Sep-Oct;11(5):054033. doi: 10.1117/1.2355667.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验