Suppr超能文献

基于分类的最小二乘训练滤波器的概述与性能评估

An overview and performance evaluation of classification-based least squares trained filters.

作者信息

Shao Ling, Zhang Hui, de Haan Gerard

机构信息

Video Processing and Analysis Group, Philips Research Laboratories, Eindhoven, The Netherlands.

出版信息

IEEE Trans Image Process. 2008 Oct;17(10):1772-82. doi: 10.1109/TIP.2008.2002162.

Abstract

An overview of the classification-based least squares trained filters on picture quality improvement algorithms is presented. For each algorithm, the training process is unique and individually selected classification methods are proposed. Objective evaluation is carried out to single out the optimal classification method for each application. To optimize combined video processing algorithms, integrated solutions are benchmarked against cascaded filters. The results show that the performance of integrated designs is superior to that of cascaded filters when the combined applications have conflicting demands in the frequency spectrum.

摘要

本文概述了基于分类的最小二乘训练滤波器在图像质量改进算法方面的应用。对于每种算法,训练过程都是独特的,并且提出了单独选择的分类方法。通过客观评估来为每个应用挑选出最优的分类方法。为了优化组合视频处理算法,将集成解决方案与级联滤波器进行基准测试。结果表明,当组合应用在频谱方面有相互冲突的要求时,集成设计的性能优于级联滤波器。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验